
Input/Output
Functions

Text filters

Sistemas Operativos
Shell Scripts

Ricardo Ruiz Rodŕıguez

Instituto de Computación
Universidad Tecnológica de la Mixteca

Primavera 2014

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Índice I

1 Input/Output
Output
Input
File descriptors

2 Functions
Introduction
Creating and using functions

3 Text filters
The head an tail commands
Using grep
Counting words

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Output
Input
File descriptors

Introduction

Until now you have been looking at commands that print out
messages.

When a command prints a message, the message is called
output.

Now you will look at the different types of output available to
shell scripts, and the mechanisms used to obtain input from
users.

Specifically, the areas that you will cover are:
1 Output to the screen.
2 Output to a file.
3 Input from a file.
4 Input from users.

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Output
Input
File descriptors

Output

When a command produces output that is written to the
terminal, we say that the program has printed its output to
the Standard Output, or STDOUT.

Error messages are not written to STDOUT, but instead they
are written to a special type of output called Standard Error
or STDERR, which is reserved for error messages.

Most commands use STDERR for error messages and
STDOUT for informational messages.

You will look at how shell scripts can use STDOUT to output
messages to each of the following:

1 The terminal (STDOUT).
2 A file.
3 The terminal and a file.

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Output
Input
File descriptors

Output to the terminal I

Two common commands print messages to the terminal
(STDOUT):

1 echo.
2 printf.

The echo command is mostly used for printing strings that
require simple formatting.

The printf command is the shell version of the C language
function printf. It provides a high degree of flexibility in
formatting output.

The most common command used to output messages to the
terminal is the echo command. Its syntax is:

echo string
Here string is the string you want printed.

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Output
Input
File descriptors

Output to the terminal II

The default behavior of echo is to add a newline at the end of
its output.

When you are generating a prompt, this is not the most
user-friendly behavior. When the
c escape sequence is used, echo does not output a newline
when it finishes printing its input string.

As an example of its use, this excerpt from a shell script:

echo -e "Making directories, please wait...\t\c"

for i ${DIRS_TO_MAKE} ; do mkdir -p $i ; done

echo "Done."

produces diagnostic output that looks like the following:

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Output
Input
File descriptors

Output to the terminal III

Making directories, please wait... Done.

Another possible use is shown in the following example:

echo -e "Copying files, please wait\t\c"

for i in ${FILES} ;

do

cp $i $DEST && echo -e ".\c"

done

echo "\tDone."

The output is similar to the following:

Copying files, please wait Done

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Output
Input
File descriptors

Output to the terminal IV

Here a single . is printed for each file that is copied.

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Output
Input
File descriptors

printf I

The printf command is similar to the echo command, in that
it enables you to print messages to STDOUT.

In its most basic form, its usage is identical to echo.

The only major difference is that the string specified to printf
explicitly requires the \n escape sequence at the end of a
string, in order for a newline to print. The echo command
prints the newline automatically.

The power of printf comes from its capability to perform
complicated formatting by using format specifications.

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Output
Input
File descriptors

printf II

The basic syntax for this is:
printf format arguments

Here, format is a string that contains one or more of the
formatting sequences, and arguments are strings that
correspond to the formatting sequences specified in format.

For those who are familiar with the C language printf
function, the formatting sequences supported by the printf
command are identical.

The formatting sequences have the form:
%[-]m.nx

Here % starts the formatting sequence and x identifies the
formatting sequences type.

Depending on the value of x, the integers m and n are
interpreted differently.

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Output
Input
File descriptors

printf III

Usually m is the minimum length of a field, and n is the
maximum length of a field. If you specify a real number
format, n is treated as the precision that should be used.

The hyphen (-) left justifies a field. By default, all fields are
right justified.

Consider the following shell script written with only echo
commands:

#!/bin/sh

echo "File Name\tType"

for i in * ;

do

echo -e "$i\t\c"

if [-d $i]; then

echo "directory"

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Output
Input
File descriptors

printf IV

elif [-h $i]; then

echo "symbolic link"

elif [-f $i]; then

echo "file"

else

echo "unknown"

fi

done

This script produces a table that lists all the visible files in the
current directory along with their file type. The output looks
similar to the following:

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Output
Input
File descriptors

printf V

File Name Type

RCS directory

dev directory

humor directory

images directory

index.html file

install directory

java directory

As you can see, the items in the table’s rows are not lined up
with the table headings.

You could fix this using spaces and tabs in conjunction with
the echo command, but using the printf command makes the
task extremely easy.

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Output
Input
File descriptors

printf VI

After test the script, please remove the - character to the first
format sequence, save the script and run it again.

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Output
Input
File descriptors

printf VII

#!/bin/sh

printf "%-32s %s\n" "File Name" "File Type"

for i in * ;

do

printf "%-32s " "$i"

if [-d "$i"]; then

echo "directory"

elif [-h "$i"]; then

echo "symbolic link"

elif [-f "$i"]; then

echo "file"

else

echo "unknown"

fi;

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Output
Input
File descriptors

printf VIII

done

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Output
Input
File descriptors

Output redirection I

In the process of developing a shell script, you often need to
capture the output of a command and store it in a file.

When the output is in a file, you can edit and modify it easily.

The process of capturing the output of a command and
storing it in a file is called output redirection because it
redirects the output of a command into a file instead of the
screen.

To redirect the output of a command or a script to a file,
instead of STDOUT, use the output redirection operator, >,
as follows:

command > file

list > file

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Output
Input
File descriptors

Output redirection II

The first form redirects the output of the specified command
to a specified file, whereas the second redirects the output of
a specified list to a specified file. If file exists, its contents are
overwritten; if file does not exist, it is created.

Examples:

date > now

$ cat now

Mon Jun 3 13:32:17 CDT 2013

{ date; uptime; who ; } > mylog

The shell provides a second form of output redirection with
the >> operator, which appends output to a file. The basic
syntax is:

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Output
Input
File descriptors

Output redirection III

command >> file

list >> file

In these forms, output is appended to the end of the specified
file, or the specified file is created if it does not exist.

Example:

{ date; uptime; who ; } >> mylog

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Output
Input
File descriptors

Redirecting output to a file and the screen I

In certain instances, you need to direct the output of a script
to a file and onto the terminal.

An example of this is shell scripts that are required to produce
a log file of their activities.

For interactive scripts, the log file cannot just contain the
script’s output redirected to a file.

To redirect output to a file and the screen, use the tee
command. The basic syntax is as follows:

command | tee file
Here command is the name of a command, such as ls, and file
is the name of the file where you want the output written.

For shell scripts that require all their output to be logged, the
following if statement is often used:

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Output
Input
File descriptors

Redirecting output to a file and the screen II

if ["$LOGGING" != "true"] ; then

LOGGING="true" ; export LOGGING ;

exec $0 | tee $LOGFILE

fi

Here you check to see whether a variable, $LOGGING,
indicates that logging is turned on. If it is, the script
continues; otherwise, the script reruns, and tee sends the
output to a log file.

To record all the output from a script, this if statement is
usually one of the first commands in a script.

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Output
Input
File descriptors

Input

Many UNIX programs are interactive and read input from the
user.

To use such programs in shell scripts, you need to provide
them with input in a noninteractive manner.

Also, scripts often need to ask the user for input in order to
execute commands correctly.

To provide input to interactive programs or to read input from
the user, you need to use input redirection. Now, you will look
at the following two methods in detail:

1 Input redirection from files.
2 Reading input from a user.
3 Redirecting the output of one command to the input of

another.

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Output
Input
File descriptors

Input redirection

When you need to use an interactive command in a script,
you need to provide the command with input.

One method for doing this is to store the input of the
command in a file and then tell the command to read input
from that file. You accomplish this using input redirection.

The input can be redirected in a manner similar to output
redirection. In general, input redirection is:

command < file
Here the contents of file become the input for command.

For example, the following would be an excellent use of
redirection:

mail rruiz@mixteco.utm.mx < Exam_Answers

Here the input to the mail command, which becomes the
body of the mail message, is the file Exam Answers.

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Output
Input
File descriptors

Here documents I

An additional use of input redirection is in the creation of
here documents.

A common use of here documents is in the generation of
email messages within scripts and in the generation of files
containing the values of all the variables in the script.

Also, here documents store temporary information.

Say you need to send a list of phone numbers or URLs to the
printer. By using a here document, you can enter the
information that you want to send to the printer into the here
document and then send that here document to the printer.
This is much simpler than using a temporary file, which needs
to be created and then deleted.

The general form for a here document is:

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Output
Input
File descriptors

Here documents II

command << delimiter

document

delimiter

Here the shell interprets the << operator as an instruction to
read input until it finds a line containing the specified
delimiter.

All the input lines up to the line containing the delimiter are
then fed into the standard input of the command.

The delimiter tells the shell that the here document has
completed. Without it, the shell continues to read input
forever.

The delimiter must be a single word that does not contain
spaces or tabs.

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Output
Input
File descriptors

Here documents III

For example, to print a quick list of URLs, you could use the
following here document:

lpr << URLS

http://www.utm.mx/~rruiz/

http://www.cisco.com/

http://www.linux.org/

http://www.gnu.org/

URLS

You can also combine here documents with output redirection
as follows:

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Output
Input
File descriptors

Here documents IV

command > file << delimiter

document

delimiter

If used in this form, the output of command is redirected to
the specified file, and the input of command becomes the here
document.

For example, you can use the following command to create a
file with the short list of URLs given previously:

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Output
Input
File descriptors

Here documents V

cat > urls << URLS

http://www.utm.mx/~rruiz/

http://www.cisco.com/

http://www.linux.org/

http://www.gnu.org/

URLS

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Output
Input
File descriptors

Reading user input I

A common task in shell scripts is to prompt users for input
and then read their responses.

To do this, use the read command to set the value of a
variable and then evaluate the value of the variable with a
case statement.

The read command works as follows:
read name

It reads the entire line of user input until the user presses
return and makes that line the value of the variable specified
by name.

An example of this is:

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Output
Input
File descriptors

Reading user input II

YN=yes

printf "Dr. Gordon, do you want to play a game [$YN]? "

read YN

: ${YN:=yes}

case $YN in

[yY]|[yY][eE][sS]) exec sawgame ;;

*) echo "Maybe later." ;;

esac

A common use of input redirection in conjunction with the
read command is the reading of a file one line at a time using
the while loop.

The basic syntax is:

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Output
Input
File descriptors

Reading user input III

while read LINE

do

: # manipulate file here

done < file

In the body of the while loop, you can manipulate each line of
the specified file. A simple example of this is:

while read LINE

do

case $LINE in

root) echo $LINE ;;

esac

done < /etc/passwd

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Output
Input
File descriptors

Reading user input IV

Here only the lines that contain the string root in the file
/etc/passwd are displayed.

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Output
Input
File descriptors

Pipelines I

Most commands in UNIX that are designed to work with files
can also read input from STDIN.

This enables you to use one program to filter the output of
another.

This is one of the most common tasks in shell scripting:
having one program manipulate the output of another
program.

You can redirect the output of one command to the input of
another command using a pipeline, which connects several
commands together with pipes as follows:

command1 | command2 | . . .
The pipe character, |, connects the standard output of
command1 to the standard input of command2, and so on.

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Output
Input
File descriptors

Pipelines II

The commands can be as simple or complex as are required.

Examples of pipeline commands:

$ tail -f /var/adm/messages | more

$ ps -ael | grep "$UID" | more

In the first example, the standard output of the tail command
is piped into the standard input of the more command, which
enables the output to be viewed one screen at a time.

In the second example, the standard output of ps is connected
to the standard input of grep, and the standard output of
grep is connected to the standard input of more, so that the
output of grep can be viewed one screen at a time.

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Output
Input
File descriptors

Pipelines III

One important thing about pipelines is that each command is
executed as a separate process, and the exit status of a
pipeline is the exit status of the last command.

It is vital to remember this fact when writing scripts that
must do error handling.

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Output
Input
File descriptors

Overview I

When you issue any command, three files are opened and
associated with that command.

In the shell, each of these files is represented by a small
integer called a file descriptor.

A file descriptor is a mechanism by which you can associate a
number with a filename and then use that number to read
and write from the file.

Sometimes file descriptors are called file handles.

The three files opened for each command along with their
corresponding file descriptors are:

1 Standard Input (STDIN), 0.
2 Standard Output (STDOUT), 1.
3 Standard Error (STDERR), 2.

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Output
Input
File descriptors

Overview II

The integer following each of these files is its file descriptor.

Usually, these files are associated with the user’s terminal, but
they can be redirected into other files.

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Output
Input
File descriptors

Associating files with a file descriptor I

By default, the shell provides you with three standard file
descriptors for every command.

With it, you can also associate any file with file descriptors
using the exec command.

Associating a file with a file descriptor is useful when you need
to redirect output or input to a file many times but you don’t
want to repeat the filename several times.

To open a file for writing, use one of the following forms:

exec n>file
exec n>>file

Here n is an integer, and file is the name of the file you want
to open for writing.

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Output
Input
File descriptors

Associating files with a file descriptor II

The first form overwrites the specified file if it exists. The
second form appends to the specified file.

For example, the following:

$ exec 4>fd4.out

associates the file fd4.out with the file descriptor 4.

To open a file for reading, you use the following form:
exec n<file

Here n is an integer, and file is the name of the file you want
to open for reading.

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Output
Input
File descriptors

General Input/Output redirection I

You can perform general output redirection by combining a
file descriptor and an output redirection operator.

The general forms are:

command n> file
command n>> file

Here command is the name of a command, such as ls, n is a
file descriptor (integer), and file is the name of the file.

The first form redirects the output of command to the
specified file, whereas the second form appends the output of
command to the specified file.

For example, you can write the standard output redirection
forms in the general form as:

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Output
Input
File descriptors

General Input/Output redirection II

command 1> file
command 1>> file

Here the 1 explicitly states that STDOUT is being redirected
into the given file.

General input redirection is similar to general output
redirection. It is performed as follows:

command n<file
Here command is the name of a command, such as ls, n is a
file descriptor (integer), and file is the name of the file.

For example, the standard input redirection forms can be
written in the general form as:

command 0<file

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Output
Input
File descriptors

Redirecting STDOUT and STDERR to separate files I

One of the most common uses of file descriptors is to redirect
STDOUT and STDERR to separate files.

The basic syntax is:
command 1> file1 2> file2

Here the STDOUT of the specified command is redirected to
file1, and the STDERR (error messages) is redirected to file2.

Often the STDOUT file descriptor, 1, is not written, so a
shorter form of the basic syntax is:

command > file1 2> file2

You can also use the append operator in place of either
standard redirect operator:

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Output
Input
File descriptors

Redirecting STDOUT and STDERR to separate files II

command >> file1 2> file2
command > file1 2>> file2
command >> file1 2>> file2

The first form appends STDOUT to file1 and redirects
STDERR to file2.

The second form redirects STDOUT to file1 and appends
STDERR to file2.

The third form appends STDOUT to file1 and appends
STDERR to file2.

Example:

for FILE in $FILES

do

ln -s $FILE ./docs >> /tmp/ln.log 2> /dev/null

done

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Output
Input
File descriptors

Redirecting STDOUT and STDERR to separate files III

Here the STDOUT of ln is appended to the file /tmp/ln.log,
and the STDERR is redirected to the file /dev/null, in order
to discard it.

The file /dev/null is a special file available on all UNIX
systems used to discard output. It is sometimes referred to as
the bit bucket.

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Output
Input
File descriptors

Redirecting STDOUT and STDERR to the same file I

Sometimes you need to redirect STDOUT and STDERR to
the same file. In general, you do this by:

command > file 2>&1
list > file 2>&1

Here STDOUT (file description 1) and STDERR (file
descriptor 2) are redirected into the specified file.

Here is a situation where it is necessary to redirect both the
standard output and the standard error:

rm -rf /tmp/my_tmp_dir > /dev/null 2>&1 ;

mkdir /tmp/my_tmp_dir

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Output
Input
File descriptors

Redirecting STDOUT and STDERR to the same file II

Here, you are not interested in the error message or the
informational message printed by the rm command. You only
want to remove the directory, thus its output or any error
message it prints are redirected to /dev/null.

If you had one command that should append its standard error
and standard output to a file, you use the following form:

command >> file 2>&1
list >> file 2>&1

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Output
Input
File descriptors

Redirecting redirecting... I

You can also use output redirection to output error messages
on STDERR.

The basic syntax is:

echo string 1>&2 printf format args 1>&2

You might also see these commands with the STDOUT file
descriptor, 1, omitted:

echo string >&2 printf format args >&2

As an example, say that you need to display an error message
if a directory is given instead of a file. You can use the
following if statement:

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Output
Input
File descriptors

Redirecting redirecting... II

if [! -f $FILE] ; then

echo "ERROR: $FILE is not a file" >&2 ;

fi

You can redirect STDOUT and STDERR to a single file by
using the general
form for redirecting the output of one file descriptor to another:

n>&m
Here n and m are file descriptors (integers).

If you let n=2 and m=1, you see that STDERR is redirected
to STDOUT. By redirecting STDOUT to a file, you also
redirect STDERR.

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Output
Input
File descriptors

Redirecting redirecting... III

If m is a hyphen (-) instead of a number, the file
corresponding to the file descriptor n is closed. When a file
descriptor is closed, trying to read or write from it results in
an error.

One of the most common uses of this form of redirection is
for reading files one line at a time.

You already looked at using a while loop to perform this task:

while read LINE

do

: # manipulate file here

done < file

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Output
Input
File descriptors

Redirecting redirecting... IV

The main problem with this loop is that it is executed in a
subshell, thus changes to the script environment, such as
exporting variables and changing the current working
directory, does not apply to the script after the while loop
changes. As an example, consider the following script:

#!/bin/sh

if [-f "$1"] ; then

i=0

while read LINE

do

i=`echo "$i + 1" | bc`

done < "$1"

echo $i

fi

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Output
Input
File descriptors

Redirecting redirecting... V

This script tries to count the number of lines in the file
specified to it as an argument.

When the while loop exits, the value of $i is not preserved.

In this case, you need to change a variable’s value inside the
while loop and then use that value outside the loop.

You can accomplish this by redirecting the STDIN prior to
entering the loop and then restoring STDIN to the terminal
after the while loop.

The basic syntax is:

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Output
Input
File descriptors

Redirecting redirecting... VI

exec n<&0 < file

while read LINE

do

: # manipulate file here

done

exec 0<&n n<&-

Here n is an integer greater than 2, and file is the name of the
file you want to read.

Usually n is chosen as a small number such as 3, 4, or 5.

As an example, you can construct a shell version of the cat
command:

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Output
Input
File descriptors

Redirecting redirecting... VII

#!/bin/sh

if [$# -ge 1] ; then

for FILE in $@

do

exec 5<&0 < "$i"

while read LINE ; do echo $LINE ; done

exec 0<&5 5<&-

done

fi

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Introduction
Creating and using functions

Introduction

Shell functions provide a way of mapping a name to a list of
commands.

Shell functions are similar to subroutines, procedures, and
functions in other programming languages.

Think of them as miniature shell scripts that enable a name to
be associated with a set of commands.

The main difference is that a new instance of the shell begins
in order to run a shell script, whereas functions run in the
current shell.

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Introduction
Creating and using functions

Creating and using functions I

The formal definition of a shell function is as follows:
name () list ;

A function binds a name to the list of commands that
composes the body of the function. The (and) characters
are required at the function definition.

The following examples illustrate valid and invalid function
definitions:

lsl() { ls -l ; } # valid

lsl { ls -l ; } # invalid

In this example, the first definition is valid but the second one
is not because it omits the parentheses after the string lsl.

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Introduction
Creating and using functions

Creating and using functions II

This example also demonstrates a common use of functions.
Because the original shell, sh, did not have the alias keyword
common to more recent shells, all aliases were defined in
terms of shell functions.

A frequently encountered example of this is the source
command. The sh equivalent is the . command.

Many converts from csh use the following function to simulate
the source command:

source() { . "$@" ; }

As this example shows, shell functions have a separate set of
arguments than the shell script to which they belong.

An important feature of shell functions is that you can use
them to replace binaries or shell built-ins of the same name.

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Introduction
Creating and using functions

Creating and using functions III

An example of this is:

cd () { chdir ${1:-$HOME} ; PS1="`pwd`$ " ;

export PS1 ; }

This function replaces the cd command with a function which
changes directories but also sets the primary shell prompt,
$PS1, to include the current directory.

To invoke a function, only its name is required, thus typing:
$ lsl

on the command line executes the lsl() function, but typing:
$ lsl()

does not work because sh interprets this as a redefinition of
the function by the name lsl.

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Introduction
Creating and using functions

Creating and using functions IV

In most versions of the shell, typing lsl() results in a prompt
similar to the following:

>

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Introduction
Creating and using functions

Examples I

A simple task that is well-suited to a function is listing the
current value of your PATH, with each directory listed on a
single line.

The basic shell code is:

OLDIFS="$IFS"

IFS=:

for DIR in $PATH ; do echo $DIR ; done

IFS="$OLDIFS"

Here you save the value of IFS in the variable OLDIFS and
then set IFS to :.

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Introduction
Creating and using functions

Examples II

Because IFS is the Internal Field Separator for the shell, you
can use the for loop to cycle through the individual entries in
PATH.

When you are finished, restore the value of IFS.

To wrap this up in a function, insert the function name and
the brackets as follows:

lspath() {

OLDIFS="$IFS"

IFS=:

for DIR in $PATH ; do echo $DIR ; done

IFS="$OLDIFS"

}

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Introduction
Creating and using functions

Examples III

Now you can run the function as follows:
$ lspath

One of the main uses of this function is to check whether a
particular directory is in your PATH.

For example, to check whether /usr/dt/bin is in my path, I
can do the following:

$ lspath | grep "/usr/dt/bin"

Although the shell ignores directories in the path that does
not exist, consider the following function, which deals with the
issue getting your PATH variable set correctly:

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

Introduction
Creating and using functions

Examples IV

SetPath() {

PATH=${PATH:="/sbin:/bin"};

for _DIR in "$@"

do

if [-d "$_DIR"] ; then PATH="$PATH":"$_DIR" ; fi

done

export PATH

unset _DIR

}

Here you set PATH to /sbin:/bin if it is unset.

You can invoke this function as follows:

SetPath /sbin /usr/sbin /bin /usr/bin /usr/java/bin

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

The head an tail commands
Using grep
Counting words

Introduction

Shell scripts are often called on to manipulate and reformat
the output from commands that they execute.

Sometimes this task is as simple as displaying only part of the
output by filtering out certain lines. In most instances, the
processing required is much more sophisticated.

You will look at several commands that are used heavily as
text filters in shell scripts.

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

The head an tail commands
Using grep
Counting words

The head command

The basic syntax for the head command is
head [-n lines] files

Here files is the list of the files you want the head command
to process. Without the -n lines option, the head command
shows the first 10 lines of its standard input. This option
shows the specified number of lines instead.

Its real power happens in daily applications. Consider the need
to generate a list of the five most recently accessed files in a
public HTML files directory.

To retrieve a list of the five most recently accessed files:

$ ls -1ut /home/rruiz/public_html | head -5

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

The head an tail commands
Using grep
Counting words

The tail command I

The basic syntax for the tail command is similar to that of the
head command:

tail [-n lines] files
Here files is the list of the files the tail command should
process. Without the -n lines option, the tail command shows
the last 10 lines of its standard input. With this option it
shows the specified number of lines instead.

Now consider the problem of generating a list of the five
oldest mail spools on the system.

$ ls -1rt /var/spool/mail | tail -5

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

The head an tail commands
Using grep
Counting words

The tail command II

An extremely useful feature of the tail command is the -f (f
as in follow) option:

tail -f file
Specifying the -f option enables you to examine the specified
file while programs are writing to it.

If you have to look at the log files generated by programs that
you are debugging, but you don’t want to wait for the
program to finish, you can start the program and then use tail
-f for the log file.

Some Web administrators use a command such as the
following to watch the HTTP requests made for their system:

$ tail -f /var/log/httpd/access_log

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

The head an tail commands
Using grep
Counting words

Introduction I

The grep command lets you locate the lines in a file that
contain a particular word or a phrase.

The word grep stands for globally regular expression print.

The command is derived from a feature of the original UNIX
text editor, ed. To find a word in ed, the following command
was used:

g/word/p
Here word is a regular expression.

The basic syntax of the grep command is:
grep word files

Here files is the name of a file(s) in which you want to search
for word.

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

The head an tail commands
Using grep
Counting words

Introduction II

The grep command displays every line in file that contains
word. When you specify more than one file, grep precedes
each of the output lines with the name of the file that
contains that line.

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

The head an tail commands
Using grep
Counting words

Some grep features I

The following command locates all the occurrences of the
word pipe in file chapter15.tex

$ grep pipe chapter15.tex

If grep cannot find a line in any of the specified files that
contains the requested word, no output is produced.

One of the features of grep is that it matches the specified
word according to the case that you specify.

Sometimes you want to match words regardless of the case
that you specify. To do this, use the -i option.

When no files are specified, grep looks for matches on the
lines that are entered on STDIN. This makes it perfect for
attaching to pipes. For example:

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

The head an tail commands
Using grep
Counting words

Some grep features II

$ who | grep rruiz

Most of the time you use grep to search through a file looking
for a particular word, but sometimes you want to acquire a list
of all the lines that do not match a particular word.

Using grep, this is simple: specify the -v option.

For example, the following command produces a list of all the
lines in /etc/passwd that do not contain the word home:

$ grep -v home /etc/passwd

As grep looks through a file for a given word, it keeps track of
the line numbers that it has examined.

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

The head an tail commands
Using grep
Counting words

Some grep features III

You can have grep list the line numbers along with the
matching lines by specifying the -n option. With this option
the output format is:

file:line number:line
Here file is the name of the file in which the match occurs,
line number is the line number in the file on which the
matching line occurs, and line is the complete line that
contains the specified word.

Sometimes you don’t really care about the actual lines in a file
that match a particular word. You want a list of all the files
that contain that word.

By using the -l option of the grep command, you reach this:

$ grep -l pipe *

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

The head an tail commands
Using grep
Counting words

Introduction I

Counting words is an essential capability in shell scripts.
There are many ways to do it, with the easiest being the wc
command.

Unfortunately, it displays only the number of characters,
words, or lines. What about when you need to count the
number of occurrences of word in a file?

The tr command (tr for transliterate) changes all the
characters in one set into characters in a second set.
Sometimes it deletes sets of characters.

The sort command sorts the lines in an input file. If you don’t
specify an input file, it sorts the lines given on STDIN.

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

The head an tail commands
Using grep
Counting words

Introduction II

The uniq command (uniq for unique) prints all the unique
lines in a file. If a line occurs multiple times, only one copy of
the line is printed out. It can also list the number of times a
particular line was duplicated.

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

The head an tail commands
Using grep
Counting words

The tr command I

To count the number of occurrences of word in a file, first you
need to eliminate all the punctuation and delimiters in the
input file because the word “end.” and the word “end” are the
same.

You accomplish this task using the tr command. Its basic
syntax is:

tr ’set1’ ’set2’
Here tr takes all the characters in set1 and transliterates them
to the characters in set2

Usually, the characters themselves are used, but the standard
C language escape sequences also work.

To get an accurate count, all the words should be separated by
spaces, so you need to covert all tabs and newlines to spaces:

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

The head an tail commands
Using grep
Counting words

The tr command II

$ tr '!?":;\[\]{}(),.\t\n' ' ' < file

Here I specified set2 as the space character because words
separated by the characters in set1 need to remain separate
after the punctuation is removed.

Notice that the characters [and] are given as \[and \].
These two characters have a special meaning in tr and need
to be escaped using the backslash character in order to be
handled correctly.

The next step is to transliterate all capitalized versions of
words to a lowercase version. To do this, you tell tr to change
all the capital characters ’A-Z’ into lowercase characters ’a-z’
as follows:

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

The head an tail commands
Using grep
Counting words

The tr command III

$ tr '!?":;\[\]{}(),.\t\n' ' ' < file |

tr 'A-Z' 'a-z'

At this point, several of the lines have multiple spaces
separating the words. You need to reduce or squeeze these
multiple spaces into single spaces to avoid problems with
counting.

To do this, you need to use the -s (s as in squeeze) option to
the tr command.

The basic syntax is:
tr -s ’set1’

When tr encounters multiple consecutive occurrences of a
character in set1, it replaces these with only one occurrence of
the character.

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

The head an tail commands
Using grep
Counting words

The tr command IV

Try the following:

$ echo "feed me" | tr -s 'e'

$ echo "Shell Programming" | tr -s 'lm'

Now you can squeeze multiple spaces in the output into single
spaces using the command:

$ tr '!?":;\[\]{}(),.\t\n' ' ' < file |

tr 'A-Z' 'a-z' | tr -s ' '

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

The head an tail commands
Using grep
Counting words

The sort command I

To get a count of how many times each word is used, you
need to sort the file using the sort command.

In its simplest form, the sort command sorts each of its input
lines. Thus you need to have only one word per line.

You can do this changing all the spaces into new lines as
follows:

$ tr '!?":;\[\]{}(),.\t\n' ' ' < file |

tr 'A-Z' 'a-z' | tr -s ' ' | tr ' ' '\n'

Now you can sort the output, by adding the sort command:

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

The head an tail commands
Using grep
Counting words

The sort command II

$ tr '!?":;\[\]{}(),.\t\n' ' ' < file |

tr 'A-Z' 'a-z' | tr -s ' ' | tr ' ' '\n' |

sort

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

The head an tail commands
Using grep
Counting words

The uniq command I

At this point, you can eliminate all the repeated words by
using the -u (u as in unique) option of the sort command.

Because you need a count of the number of times a word is
repeated, you should use the uniq command.

By default, the uniq command discards all but one of the
repeated lines.

The uniq command produces a list of the uniq items in a file
by comparing consecutive lines.

To function properly, its input needs to be a sorted file.

You need uniq to print not only a list of the unique words in
the file but also the number of times a word occurs.

You can do this by specifying the -c (c as in count) option to
the uniq command:

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

The head an tail commands
Using grep
Counting words

The uniq command II

$ tr '!?":;\[\]{}(),.\t\n' ' ' < file |

tr 'A-Z' 'a-z' | tr -s ' ' | tr ' ' '\n' |

sort | uniq -c

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

The head an tail commands
Using grep
Counting words

Sorting numbers I

At this point the output is sorted alphabetically. Although this
output is useful, it is much easier to determine the most
frequently used words if the list is sorted by the number of
times a word occurs.

To obtain such a list, you need sort to sort by numeric value
instead of string comparison.

It would also be nice if the largest number was printed first.
By default, sort prints the largest number last.

To satisfy both of these requirements, you specify the -n (n as
in numeric) and -r (r as in reverse) options to the sort
command:

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

The head an tail commands
Using grep
Counting words

Sorting numbers II

$ tr '!?":;\[\]{}(),.\t\n' ' ' < file |

tr 'A-Z' 'a-z' | tr -s ' ' | tr ' ' '\n' |

sort | uniq -c | sort -rn

By piping the output to head, you can get an idea of what
the ten most repeated words are:

$ tr '!?":;\[\]{}(),.\t\n' ' ' < file |

tr 'A-Z' 'a-z' | tr -s ' ' | tr ' ' '\n' |

sort | uniq -c | sort -rn | head

You used the sort -rn command to sort the output by numbers
because the numbers occurred in the first column instead of
the second column.

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

The head an tail commands
Using grep
Counting words

Sorting numbers III

If the numbers occurred in any other column, this would not
be possible.

The sort command constructs a key for each line in the file,
and then it arranges these keys into sorted order. By default,
the key spans the entire line.

The -k option gives you the flexibility of telling sort where the
key should begin and where it should end, in terms of columns.

The number of columns in a line is the number of individual
words on that line. For example, the following line contains
three columns:

files 80 100

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

The head an tail commands
Using grep
Counting words

Sorting numbers IV

The basic syntax of the -k option is:
sort -k start,end files

Here start is the starting column for the key, and end is the
ending column for the key. The first column is 1, the second
column is 2, and so on.

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

The head an tail commands
Using grep
Counting words

Using character classes with tr I

The tr command knows several character classes, and the
punctuation class is one of them. Table 1 gives a complete list
of the character class names.

The way to invoke tr with one of these character classes is:
tr ’[:classname:]’ ’set2’

Here classname is the name of one of the classes given in
Table 1, and set2 is the set of characters you want the
characters in classname to be transliterated to.

For example, to get rid of punctuation and spaces, you use
the punct and space classes:

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

The head an tail commands
Using grep
Counting words

Using character classes with tr II

$ tr '[:punct:]' ' ' < file |

tr '[:space:]' ' ' | tr 'A-Z' 'a-z' |

tr -s ' ' | tr ' ' '\n' | sort | uniq -c |

sort -rn | head

I could also have replaced ‘A-Z’ and ‘a-z’ with the upper and
lower classes, but there is no real advantage to using the
classes.

In most cases the ranges are much more illustrative of your
intentions.

Ricardo Ruiz Rodŕıguez Shell Scripts

Input/Output
Functions

Text filters

The head an tail commands
Using grep
Counting words

Character classes

Class Description
alnum Letters and digits

alpha Letters

blank Horizontal whitespace

cntrl Control characters

digit Digits

graph Printable characters, not including spaces

lower Lowercase letters

print Printable characters, including spaces

punct Punctuation

space Horizontal or vertical whitespace

upper Uppercase letters

xdigit Hexadecimal digits

Table 1 : Character classes understood by the TR command.

Ricardo Ruiz Rodŕıguez Shell Scripts

	Input/Output
	Output
	Input
	File descriptors

	Functions
	Introduction
	Creating and using functions

	Text filters
	The head an tail commands
	Using grep
	Counting words

