Sistemas Operativos
Shell Scripts

Ricardo Ruiz Rodriguez

Instituto de Computacién
Universidad Tecnolégica de la Mixteca
Primavera 2014

Ricardo Ruiz Rodriguez Shell Scripts

Indice |

Manipulating file atributes
m Introduction
m File types
m Permissions

Processes
m Introduction
m Foreground and background processes
m Dealing with processes
Variables
m Overview
m Array variables
m Further considerations
m Types of variables

Substitution

Indice Il

m Filename substitution (globbing)
m Value-based variable substitution
m Command and arithmetic substitution

Quoting
m Quoting schemes
m Quoting rules and situations

Ricardo Ruiz Rodriguez Shell Scripts

Manipulating file atributes
Introduction
File types
Permissions

Introduction

In addition to working with files and directories, shell scripts are
often called on to manipulate the attributes of a file.
Now, you will learn how to manipulate the following file attributes:

@ Permissions

@ Owners

© Groups
To determine a file's type, specify the -l option to the Is. When
this option is specified, Is lists the file type for the specified files.

To obtain file type information about a directory, you must specify
the -d option along with the -l option

Ricardo Ruiz Rodriguez Shell Scripts

Manipulating file atributes
Introduction
File types

Permissions

File types

UNIX supports several different types of files.

Files can contain your important data, such as files from a word
processor or graphics package, or they can represent devices,
directories, or symbolic links.

The special characters for different file types are:

@ -: Regular file.

@ |: Symbolic link.

© c: Character special.
@ b: Block special.

© p: Named pipe.

@ s: Socket.

@ d: Directory file.

Ricardo Ruiz Rodriguez Shell Scripts

Manipulating file atributes
Introduction
File types
Permissions

Regular files

@ Regular files are the most common type of files you will
encounter. These files store any kind of data.

@ Often simply determining that a file is a regular file tells you
very little about the file itself.

@ Usually you need to know whether a particular file is a binary
program, a shell script, or a library. In these instances, the file
command is very useful.

Ricardo Ruiz Rodriguez Shell Scripts

Manipulating file atributes
Introduction
File types
Permissions

Symbolic links

@ A symbolic link is a special file that points to another file on
the system. When you access one of these files, it has a
pathname stored inside it.

@ A symbolic link is similar to a shortcut or an alias in Windows
or Mac OS.

@ You can use symbolic links to make a file appear as though it
is located in many different places or has many different
names in the file system.

@ Symbolic links can point to any type of file or directory.
Create symbolic links using the In command with the -s option.
The syntax is as follows:

In -s source destination
Here, source is either the absolute or relative path to the original
version of the file, and destination is the name you want the link to

Ricardo Ruiz Rodriguez Shell Scripts

Manipulating file atributes
Introduction
File types
Permissions

Device files

@ You can access UNIX devices through reading and writing to
device files. These device files are access points to the device
within the file systems.

@ Usually, device files are located under the /dev directory. The
two main types of device files are:

@ Character special files.
@ Block special files.

@ Character special files provide a mechanism for

communicating with a device one character at a time.

@ Block special files also provide a mechanism for
communicating with device drivers via the file system. These
files are called block devices because they transfer large blocks
of data at a time.

Ricardo Ruiz Rodriguez Shell Scripts

Manipulating file atributes
Introduction
File types
Permissions

Named pipes and sockets

@ On the command line, temporary anonymous pipes are used,
but sometimes more control is needed than the command line
provides.

@ UNIX provides a way to create a named pipe, so that two or
more process can communicate with each other via a file that
acts like a pipe.

@ Because these files allow process to communicate with one
another, they are one of the most popular forms of IPC.

@ Socket files are another form of IPC, but sockets can pass
data and information between two processes that are not
running on the same machine.

@ Socket files are created when communication to a process on
another machine located on a network is required.

Ricardo Ruiz Rodriguez Shell Scripts

Manipulating file atributes
Introduction
File types
Permissions

Owners, groups and permissions

Every file in UNIX has the following attributes:
@ Owner permissions.
@ Group permissions.
© Other (world) permissions.

You can perform the following actions on a file:
@ Read (r).
@ Write (w).
© Execute (x).

If a user has read permissions, that person can view the contents
of a file. A user with write permissions can change the contents of
a file, whereas a user with execute permissions can run a file as a
program.

Ricardo Ruiz Rodriguez Shell Scripts

Manipulating file atributes
Introduction
File types
Permissions

Directory permissions |

@ The x bit on a directory grants access to the directory. The
read and write permissions have no effect if the access bit is
not set.

@ The read permission on a directory enables users to use the Is
command to view files and their attributes that are located in
the directory.

@ The write permission on a directory is the permission to watch
out for because it lets a user add and also remove files from
the directory.

@ A directory that grants a user only execute permission will not
enable the user to view the contents of the directory or add or
delete any files from the directory, but it will let the user run
executable files located in the directory.

Ricardo Ruiz Rodriguez Shell Scripts

Manipulating file atributes
Introduction
File types
Permissions

Directory permissions ||

@ To ensure that your files are secure, check both the file
permissions and the permissions of the directory where the file
is located.

@ If a file has write permission for owner, group, and other, the
file is insecure.

o If a file is in a directory that has write and execute
permissions for owner, group, and other, all files located in the
directory are insecure, no matter what the permissions on the
files themselves are.

Ricardo Ruiz Rodriguez Shell Scripts

Manipulating file atributes
Introduction
File types
Permissions

SUID and GUID file permission |

@ Often when a command is executed, it will have to be
executed with special privileges in order to accomplish its task.

@ When you change your password with the passwd
(/usr/bin/passwd) command, your new password is stored in
the file /etc/shadow. As a regular user, you do not have
read or write access to this file for security reasons, but when
you change your password, you need to have write permission
to this file.

@ Additional permissions are given to programs via a mechanism
known as the Set User ID (SUID) and Set Group ID (SGID)
bits.

Ricardo Ruiz Rodriguez Shell Scripts

Manipulating file atributes
Introduction
File types
Permissions

SUID and GUID file permission Il

@ When you execute a program that has the SUID bit enabled,
you inherit the permissions of that program’s owner.

@ Programs that do not have the SUID bit set are run with the
permissions of the user who started the program.

@ This is true for SGID as well.

@ The SUID and SGID bits will appear as the letter "s" if the
permission is available.

@ The SUID "s" bit will be located in the permission bits where
the owners execute permission would normally reside.

o A capital letter 'S” in the execute position instead of a
lowercase s indicates that the execute bit is not set.

Ricardo Ruiz Rodriguez Shell Scripts

Manipulating file atributes
Introduction
File types
Permissions

SUID and GUID file permission Il

@ The SUID bit or stick bit imposes extra file removal
permissions on a directory. A directory with write permissions
enabled for a user enables that user to add and delete any files
from this directory.

@ Directories can also take advantage of the SGID bit.

@ If a directory has the SGID bit set, any new files added to the
directory automatically inherit that directories group, instead
of the group of the user writing the file.

Ricardo Ruiz Rodriguez Shell Scripts

Manipulating file atributes
Introduction
File types
Permissions

Changing permissions |

You can change file and directory permissions with the chmod
command. The basic syntax is as follows:
chmod expression files
Here, expression is a statement of how to change the permissions.
This expression can be of the following types:
@ Symbolic.

@ Octal.
The symbolic expression has the syntax of:

(who)(action)(permissions)
Here, who:

@ u Owner.

e g Group.
Ricardo Ruiz Rodriguez Shell Scripts

Manipulating file atributes
Introduction
File types
Permissions

Changing permissions Il

@ o Other.

e a All.
action:

@ + Adding permissions to the file.

@ - Removing permission from the file.

o = Explicitly set the file permissions.
permissions:

@ r Read.

o w Write.

o x Execute.

e s SUID or SGID.

Ricardo Ruiz Rodriguez Shell Scripts

Manipulating file atributes
Introduction
File types
Permissions

Changing permissions Il

What does each command?

user@machine$ chmod a=r *
user@machine$ chmod guo=r *
user@machine$ chmod go-w dummy_file
user@machine$ cd ; chmod go= *
user@machine$ cd ; chmod go-rwx *
user@machine$ chmod guo+rx *
user@machine$ chmod uog+xr *
user@machine$ chmod go-w,a+x a.out
user@machine$ cd ; chmod ug+s

@ chmod also enables you to change the permissions for every
file in a directory including the files in subdirectories.

Ricardo Ruiz Rodriguez Shell Scripts

Manipulating file atributes
Introduction
File types
Permissions

Changing permissions |V

@ You can accomplish this by specifying the -R option.

@ By changing permissions with an octal expression, you can
explicitly set file permissions:

R B, P, P, OO0 O0OO0OH

_ B, OO Kk, Kk, O O 5

R OFr OFr OFr O X
o

~NOo 0o WN -, O

Ricardo Ruiz Rodriguez Shell Scripts

Manipulating file atributes
Introduction
File types
Permissions

Changing owners and groups

The chown command changes the ownership of a file.
The basic syntax is as follows:
chown options user:group files
Because considerable variation exists in the available options,
please consult the man page on your system for a complete list.

@ The value of user can be either the name of a user or the user
id (uid) of a user on the system.

@ The value of group can be the name of a group or the group
id (gid) of a group on the system.

@ To just change the owner, you can omit the group value.

Ricardo Ruiz Rodriguez Shell Scripts

Processes uction
und and background processes
vith processes

Introduction

@ In UNIX every program runs as a process.

@ Whenever you issue a command in UNIX, it creates, or starts,
a new process.

@ The operating system tracks processes through a number
known as the pid or process ID.

@ Each process in the system has a unique pid.

@ Pids eventually repeat because all the possible numbers are
used up and the next pid rolls or starts over.

@ At any one time, no two processes with the same pid exist in
the system.

@ When you start a process, there are two ways you can run it:
in the foreground or background.

@ The difference is how the process interacts with you at the
terminal.

Ricardo Ruiz Rodriguez Shell Scripts

Processes Introduction
nd and background processes
ing with processes

Foreground and background processes |

@ By default, every process that you start runs in the
foreground.

@ It gets its input from the keyboard and sends its output to the
screen.

@ While one command is running, you can not run any other
commands (start any other processes).

@ UNIX provides facilities for starting processes in the
background, suspending foreground processes, and moving
processes between the foreground and background.

@ A background process runs without being connected to your
keyboard. If the background process requires any keyboard
input, it waits.

Ricardo Ruiz Rodriguez Shell Scripts

Processes Introduction
nd and background processes
ing with processes

Foreground and background processes Il

@ The advantage of running a process in the background is that
you can run other commands.

@ The simplest way to start a background process is to add an
ampersand (&) at the end of the command.

@ When you run a command in background, the first line you
will see contains information about the background process:
the job number and process ID.

@ You need to know the job number to manipulate it between
background and foreground.

@ As homework, check the set -0, set -0 monitor and stty -a
commands.

Ricardo Ruiz Rodriguez Shell Scripts

Processes
d and background processes
vith processes

Moving processes |

@ In addition to running a process in the background using &,
you can move a foreground process into the background.

@ While a foreground process runs, the shell does not process
any new commands. Before you can enter any commands, you
have to suspend the foreground process to get a command
prompt.

@ When a foreground process is suspended, the original process
is still in memory but is not getting any CPU time.

@ To resume the foreground process, you have two choices:
background and foreground.

Ricardo Ruiz Rodriguez Shell Scripts

Processes Introduction
nd and background processes
ing with processes

Moving processes |l

@ The bg command enables you to resume the suspended
process in the background; the fg command returns it to the
foreground.

o By default, the bg command moves the most recently
suspended process to the background.

@ You can have multiple processes suspended at one time. To
differentiate them, put the job number prefixed with a percent
sign (%) on the command line.

@ When you have a process that is in the background or
suspended, you can move it to the foreground with the fg
command.

@ By default, the process most recently suspended or moved to
the background moves to the foreground.

Ricardo Ruiz Rodriguez Shell Scripts

Processes Introduction
Foreground and background processes
Dea vith processes

Moving processes |l

@ You can also specify which job, using its job number, you
want to make foreground.

Ricardo Ruiz Rodriguez Shell Scripts

Processes Introduction
nd and background processes
ing with processes

Keeping background processes around

@ You can prevent a background process from terminating,
which is the default action, when you sign off or are
disconnected.

@ The nohup command prevents your process from getting the
HUP (Hang UP) signal and enables it to continue processing.

@ The nohup command is simple to use: just add it before the
command you actually want to run.

@ Because nohup is designed to run when there is no terminal
attached, it wants you to redirect output to a file. If you do
not, nohup redirects it automatically to a file known as
nohup.out.

Ricardo Ruiz Rodriguez Shell Scripts

Processes Introduction
nd and background processes
ing with processes

Waiting for background processes to finish |

@ There are two ways to wait for a background process to finish
before doing something else:

@ You can press the Enter key every few minutes until you get
the completion message.
@ You can use the wait command.
@ There are three ways to use the wait command:

@ With no options (the default).
@ With a process ID.
© With a job number prefixed with a percent sign.

@ The command will wait for the completion of the job or
process you specify.

e If you do not specify a job or process (the default setting), the
wait command waits for all background jobs to finish.

Ricardo Ruiz Rodriguez Shell Scripts

Processes Introduction
Foreground and background processes
Dealing with processes

Waiting for background processes to finish |l

@ Using wait without any options is useful in a shell script that
starts a series of background jobs. When they are all done, it
can continue processing.

Ricardo Ruiz Rodriguez Shell Scripts

Processes Introduction
Foreground and background processes
Dealing with processes

Listing running processes |

@ You can start processes in the foreground and background,
suspend them, and move them between the foreground and
background, but how do you know what is running?

@ There are two commands to help you find out: jobs and ps.

@ The jobs command shows you the processes you have
suspended and the ones running in the background.

@ Another command that shows all processes running is the ps
(process status) command.

@ By default, it shows those processes that you are running.

@ There are different flavors, or versions of UNIX. ps is one
command where the differences are very obvious.

Ricardo Ruiz Rodriguez Shell Scripts

Processes Introduction
Foreground and background processes

Dealing with processes

Listing running processes ||

@ Use the man ps command for an explanation of the states and
options available.

@ One of the most commonly used flags for ps is the -f (full)
option, which provides full information.

Ricardo Ruiz Rodriguez Shell Scripts

Processes Introduction
Foreground and background processes
Dealing with processes

Killing a process |

@ Another handy command to use with jobs and processes is the
kill command.

@ As the name implies, the kill command kills, or ends, a
process.

@ Just like the fg and bg commands, the job number is prefixed
with a percent sign.

@ You can also kill a specific process by specifying the process
ID on the command line without the percent sign used with
job numbers.

@ In reality, kill does not physically kill a process; it sends the
process a signal.

Ricardo Ruiz Rodriguez Shell Scripts

Processes Introduction
Foreground and background processes
Dealing with processes

Killing a process Il

@ By default, it sends the TERM (value 15) signal. A process
can choose to ignore the TERM signal or use it to begin an
orderly shut down (flushing buffers, closing files, and so on).

@ If a process ignores a regular kill command, you can use kill
-9 or kill -KILL followed by the process ID or job number
(prefixed with a percent sign). This forces the process to end.

Ricardo Ruiz Rodriguez Shell Scripts

Processes Introduction
Foreground and background processes
Dealing with processes

Parent and child processes |

@ Each process has two ID numbers assigned to it: process ID
(PID) and parent process ID (PPID).

@ When a child is forked or created, from its parent, it receives a
copy of the parent’s environment, including environment
variables.

@ The child can change its own environment, but those changes
do not reflect in the parent and go away when the child exits.

@ Background and suspended processes are usually manipulated
via job number (job ID). In addition, a job can consist of
multiple processes running in series or at the same time, in
parallel, so using the job ID is easier than tracking the
individual processes.

Ricardo Ruiz Rodriguez Shell Scripts

Processes Introduction
Foreground and background processes
Dealing with processes

Parent and child processes Il

@ Whenever you run a shell script, in addition to any commands
in the script, another copy of the shell interpreter is created.
This new shell is known as a subshell.

@ In addition to creating (forking) child processes, you can
overlay the current process with another.

@ The exec command replaces the current process with the new
one.

@ Use this command only with great caution.

Ricardo Ruiz Rodriguez Shell Scripts

Overview

Array variables

Fur rations
Types of variables

Variables

Overview |

@ Variables are "words” that hold a value.

@ The shell enables you to create, assign, and delete variables.

@ Although the shell manages some variables, it is mostly up to
the programmer to manage variables in shell scripts.

Variables are defined as follows:
name=value
Here, name is the name of the variable, and value is the value it
should hold.
For example:

FRUIT=peach
defines the variable FRUIT and assigns it the value peach.

@ Variables of this type are called scalar variables.

Ricardo Ruiz Rodriguez Shell Scripts

Variables

Overview Il

A scalar variable can hold only one value at a time.

Scalar variables are also referred to as name value pairs,
because a variable's name and its value can be thought of as
a pair.

@ The name of a variable can contain only letters (a to z or A to
Z), numbers (0 to 9) or the underscore character (_). In
addition, a variable's name can start only with a letter or an
underscore.

@ Variable names, such as 1, 2 or 11, that start with numbers
are reserved for use by the shell.

@ You can use the value stored in these variables, but you can
not set the value yourself.

Ricardo Ruiz Rodriguez Shell Scripts

Variables

Overview llI

@ The reason you cannot use other characters such as !, *, or -
is that these characters have a special meaning for the shell.

@ If you try to make a variable name with one of these special
characters it confuses the shell.

@ The shell enables you to store any value you want in a
variable.

@ The one thing to be careful about is using values that have
spaces.

@ In order to use spaces you need to quote the value.

@ To access the value stored in a variable, prefix its name with
the pesos sign ($).

Ricardo Ruiz Rodriguez Shell Scripts

Overview

Array variables
Further considerations
Types of variables

Variables

Array variables |

@ Arrays provide a method of grouping a set of variables.

@ Instead of creating a new name for each variable that is
required, you can use a single array variable that stores all the
other variables.

@ The simplest method of creating an array variable is to assign
a value to one of its indices. This is expressed as follows:
name[index]=value
Here name is the name of the array, index is the index of the
item in the array that you want to set, and value is the value
you want to set for that item.

@ As an example, the following commands:

Ricardo Ruiz Rodriguez Shell Scripts

Overview

Array variables
Further considerations
Types of variables

Variables

Array variables |1

$ FRUIT[O]=apple
$ FRUIT[1]=banana
$ FRUIT[2]=orange

set the values of the first three items in the array named
FRUIT. You could do the same thing with scalar variables as
follows:

$ FRUIT_O=apple
$ FRUIT_1=banana
$ FRUIT_2=orange

Although this works fine for small numbers of items, the array
notation is much more efficient for large numbers of items.

Ricardo Ruiz Rodriguez Shell Scripts

Overview

Array variables
Further considerations
Types of variables

Variables

Array variables Il

@ It is not necessary to set the array indices in sequence. For
example, if you issue the command:
$ FRUIT[10]=cranberry
the value of the item at index 10 in the array FRUIT is set to
cranberry.

@ One thing to note here is that the shell does not create a
bunch of blank array items to fill the space between index 2
and index 10. Instead, it keeps track of only those array
indices that contain values.

@ If an array variable with the same name as a scalar variable is
defined, the value of the scalar variable becomes the value of
the element of the array at index 0. For example, if the
following commands are executed:

Ricardo Ruiz Rodriguez Shell Scripts

Overview

Array variables

Further considerations
Types of variables

Variables

Array variables 1V

$ FRUIT=apple
$ FRUIT[1]=peach

the element FRUIT has the value apple. At this point any
accesses to the scalar variable FRUIT are treated like an
access to the array item FRUIT[0].

@ The second form of array initialization is used to set multiple
elements at once. In bash, the multiple elements are set as
follows:

name=(valuel ...valueN)
Here, name is the name of the array and valuesI ... valuel,
are the values of the items to be set.

Ricardo Ruiz Rodriguez Shell Scripts

Overview

Array variables
Further considerations
Types of variables

Variables

Array variables V

@ When setting multiple elements at once, the shell uses
consecutive array indices beginning at 0.

@ When setting multiple array elements in bash, you can place
an array index before the value:
myarray=([0]=derri [3]=gene [2]=mike [1]=terry)

Ricardo Ruiz Rodriguez Shell Scripts

Overview

Array variables
Further considerations
Types of variables

Variables

Accessing array values

@ After you have set any array variable, you access it as follows:
${namefindex]}
Here name is the name of the array, and index is the index
that interests you.

@ You can access all the items in an array in one of the following

ways:
${name[*|}
${name[Q]}
Here name is the name of the array you are interested in.

@ If any of the array items hold values with spaces, the first
form of array access will not work and will need to use the
second form.

@ The second form quotes all the array entries so that
embedded spaces are preserved.

Ricardo Ruiz Rodriguez Shell Scripts

Variables q
considerations

es of variables

Read-only variables |

@ The shell provides a way to mark variables as read-only by
using the readonly command.
@ After a variable is marked read-only, its value cannot be
changed. Consider the following commands:
$ FRUIT=kiwi
$ readonly FRUIT
$ echo $FRUIT
kiwi
$ FRUIT=aguacate

The last command results in an error message.

Ricardo Ruiz Rodriguez Shell Scripts

Overvi
les
r considerations
Types of variables

Variables

Read-only variables Il

@ The echo command can read the value of the variable
FRUIT, but the shell did not enable you to overwrite the value
stored in the variable FRUIT.

@ This feature is often used in scripts to make sure that critical
variables are not overwritten accidentally.

Ricardo Ruiz Rodriguez Shell Scripts

Overvi
les
r considerations
Types of variables

Variables

Unsetting variables

@ Unsetting a variable tells the shell to remove the variable from
the list of variables that it tracks.

@ This is like asking the shell to forget a piece of information
because it is no longer required.

@ Both scalar and array variables are unset using the unset
command:

unset name

Here name is the name of the variable to unset.

@ You cannot use the unset command to unset variables that
are marked readonly.

Ricardo Ruiz Rodriguez Shell Scripts

les
Further considerations
Types of variables

Variables

Types of variables

When a shell is running, three main types of variables are present:

@ Local Variables: is a variable that is present within the
current instance of the shell. It is not available to programs
that are started by the shell. The variables that you looked at
previously have all been local variables.

@ Environment Variables: is a variable that is available to any
child process of the shell. Some programs need environment
variables in order to function correctly. Usually a shell script
defines only those environment variables that are needed by
the programs that it runs.

© Shell Variables: is a special variable that is set by the shell
and is required by the shell in order to function correctly.
Some of these variables are environment variables whereas
others are local variables.

Ricardo Ruiz Rodriguez Shell Scripts

les
Further considerations
Types of variables

Variables

Exporting environment variables |

@ You place variables in the environment by exporting them.

@ Exporting can be done as follows:
export name

@ This command marks the variable with the specified name for
export.

@ This is the only form supported by sh, thus it is the most
commonly encountered form.

@ The standard shell idiom for exporting environment variables
is:
name=value ; export name

Ricardo Ruiz Rodriguez Shell Scripts

les
Further considerations
Types of variables

Variables

Exporting environment variables |l

@ Usually the assignment statement of an environment variable
and the corresponding export statement are written on one
line to clarify that the variable is an environment variable.

@ You can also use the export command to export more than
one variable to the environment:
export namel name2 ...nameN

@ A second form for exporting variables is supported by ksh and
bash:
export name=value
In this form, the variable specified by name is assigned the
given value. Then that variable is marked for export.

Ricardo Ruiz Rodriguez Shell Scripts

Variables Further siderations

Types of variables

Shell variables |

@ The variables that you have examined so far have all been
user variables.

@ A user variable is one that the user can manually set and reset.

@ Shell variables, are variables that the shell sets during
initialization and uses internally.

@ A partial list of shell variables available in sh, ksh, and bash

are:
PWD REPLY IFS
UID RANDOM PATH
SHLVL SECONDS HOME

Ricardo Ruiz Rodriguez Shell Scripts

Filename substitution (globbing)
Value-based variable substitution
Substitution Command and arithmetic substitution

Introduction |

@ The shell performs substitution when it encounters an
expression that contains one or more special characters.

@ You have learned already how to access a variable's value
using the special $ character.

@ The process of retrieving the value of a variable is called
variable substitution.

@ In addition to this type of substitution, the shell can perform
several other types of substitutions:

o Filename substitution (called globbing).
o Value-based variable substitution.

e Command substitution.

o Arithmetic substitution.

Ricardo Ruiz Rodriguez Shell Scripts

Filename substitution (globbing)
Value-based variable substitution
Substitution Command and arithmetic substitution

Filename substitution

@ The most common type of substitution is filename
substitution. It is sometimes referred to as globbing.

o Filename substitution is the process by which the shell
expands a string containing wildcards into a list of filenames.
@ Wildcards used in filename substitution are the following:

@ *: Matches zero or more occurrences of any character.

@ 7: Matches one occurrence of any character.

© [characters]: Matches one occurrence of any of the given
characters.

Ricardo Ruiz Rodriguez Shell Scripts

Filename substitution (globbing)
Value-based variable substitution
Substitution Command and arithmetic substitution

Using the * Wildcard |

@ The simplest form of filename substitution is the * character.
The * tells the shell to match zero or more occurrences of any
character.

o If given by itself, it matches all filenames.

@ Using the * character by itself is required in many cases, but
its strength lies in the fact that you can use it to match file
suffixes, prefixes, or both.

e To match a file prefix, use the * character as follows:
command prefix*
Here, command is the name of a command, such as Is, and
prefix is the filename prefix you want to match.

Ricardo Ruiz Rodriguez Shell Scripts

Filename substitution (globbing)
Value-based variable substitution
Substitution Command and arithmetic substitution

Using the * Wildcard Il

@ To match a file suffix, you use the * character as follows:
command *suffix

@ Here, command is the name of a command, such as Is, and
suffix is the filename suffix you want to match.

@ You can match both the suffix and the prefix of files using the
* character as follows:
command prefix*suffix
Here, command is the name of a command, such as Is, prefix
is the filename prefix, and suffix is the filename suffix you
want to match.

@ You can also use more than one occurrence of the * character
to narrow down the matches.

Ricardo Ruiz Rodriguez Shell Scripts

Filename substitution (globbing)
Value-based variable substitution
Substitution Command and arithmetic substitution

Using the * Wildcard Il

@ For example, if the command
$ Is CGl*java

matches the following files:

CGl.java CGIGet.java CGlPost.java CGlTester.java
and you want to list only the files that start with the
characters CG/, end with java, and contain the characters st,
you can use the following command:

$ Is CGl*st*java
The output is:
CGlPost.java CGlTester.java

@ Globbing is case sensitive.

Ricardo Ruiz Rodriguez Shell Scripts

Filename substitution (globbing)
Value-based variable substitution
Substitution Command and arithmetic substitution

Using the ? Wildcard

@ One limitation of the * wildcard is that it matches one or
more characters each time.

@ Consider a situation where you need to list all files that have
names of the form ch0X.tex, where X is a single number or
letter.

$ Is chO*.tex

@ In order to match only one character, the shell provides you
with the ? wildcard
$ Is ch0?.tex

@ Say that you now want to look for all files that have names of
the form chXY, where X and Y are any number or character.
To accomplish this you can use the command:

$Is ch??7.*

Ricardo Ruiz Rodriguez Shell Scripts

Filename substitution (globbing)
Value-based variable substitution
Substitution Command and arithmetic substitution

Matching sets of characters |

o Two potential problems with the ? and * wildcards are:

@ They match any character, including special characters such as
hyphens (-) or underlines ().

@ You have no way to indicate that you want to match only
letters or only numbers to these operators.

@ Sometimes you need more control over the exact characters
that you match.

@ Consider the situation where you want to match filenames of
the form chOX, where X is a number between 0 and 9.

@ Neither the * or the ? operator is cut out for this job.

@ Fortunately, the shell provides you with the capability to
match sets of characters using the [wildcard.

Ricardo Ruiz Rodriguez Shell Scripts

Filename substitution (globbing)
Value-based variable substitution
Substitution Command and arithmetic substitution

Matching sets of characters Il

@ The syntax for using this wildcard is:
command [characters]

@ Here command is the name of a command, such as Is, and
characters represents the characters you want to match.

@ The following commands fulfills the previous requirements:
$ Is ch0[0123456789].*

$ Is ch0[0-9].*
@ The followin example lists all the files starting with a

lowercase letter:
$ Is [a-z]*

Ricardo Ruiz Rodriguez Shell Scripts

Filename substitution (globbing)
Value-based variable substitution
Substitution Command and arithmetic substitution

Matching sets of characters Il

@ The [wildcard also enables you to combine sets by putting

the sets together. For example:
$ Is [a-zA-Z]*
matches all files that start with a letter, whereas the
command:
$ Is *[a-zA-Z0-9]

matches all files ending with a letter or a number.

@ As you can see from the previous, the maximum amount of
flexibility in filename substitution occurs when you couple the
[wildcard with the other wildcards.

Ricardo Ruiz Rodriguez Shell Scripts

Filename substitution (globbing)
Value-based variable substitution
Substitution Command and arithmetic substitution

Negating a set |

o Consider a situation where you need a list of all files except
those that start with the letter a.

@ You have two approaches to solving this problem:

@ Specify all the characters you want a filename to contain.
@ Specify that the filename should not include the letter a.

@ If you choose the first approach, you need to construct a set
of all the characters that your filename can contain. You can
start with:

[b-zA-Z0-9]*

@ This set does not include the special characters that are

allowed in filenames.

Ricardo Ruiz Rodriguez Shell Scripts

Filename substitution (globbing)
Value-based variable substitution
Substitution Command and arithmetic substitution

Negating a set |l

@ Attempting to include all these characters creates a huge set
that requires complicated quoting. An approximation of this
set is:

[b-zA-Z0-9\-_\+\=\\\"\"\{\ [\}\1*

@ Compared to this, the second approach is much better
because you only need to specify the list of characters that
you do not want.

@ The [wildcard provides you the capability to match all
characters except those that are specified as the set.

@ This is called negating the set, which you can accomplish by
specifying the ! operator as the first character in a set. The
syntax is:

command [!characters]

Ricardo Ruiz Rodriguez Shell Scripts

Filename substitution (globbing)
Value-based variable substitution
Substitution Command and arithmetic substitution

Negating a set Ill

@ Here, command is the name of a command, such as Is, and
characters is the set of characters that you do not want to be
matched.

@ For example, to list all files except those that start with the
letter a, you can use the command:

$Is ['a]*

Ricardo Ruiz Rodriguez Shell Scripts

Filename substitution (globbing)
Value-based variable substitution
Substitution Command and arithmetic substitution

Variable substitution |

@ Variable substitution enables the shell programmer to
manipulate the value of a variable based on its state.
@ Variable substitution falls into two categories:

@ Actions taken when a variable has a value.
@ Actions taken when a variable does not have a value.

Here is a summary of all variable substitution methods:

o ${parameter:-word}: If parameter is null or unset, word is
substituted for parameter. The value of parameter does not
change.

o ${parameter:=word}: If parameter is null or unset,
parameter is set to the value of word.

Ricardo Ruiz Rodriguez Shell Scripts

Filename substitution (globbing)
Value-based variable substitution
Substitution Command and arithmetic substitution

Variable substitution Il

o ${parameter:?message}: If parameter is null or unset,
message is printed to standard error. This checks that
variables are set correctly.

o ${parameter:+word}: If parameter is set, word is substituted
for parameter. The value of parameter does not change.

Ricardo Ruiz Rodriguez Shell Scripts

Filename substitution (globbing)
Value-based variable substitution
Substitution Command and arithmetic substitution

Substituting a default value

@ The first form enables a default value to be substituted when
a variable is unset or null.

@ This is formally described as:
${parameter:-word}

Here parameter is the name of the variable, and word is the
default value.

@ A simple example of its use is:

PS1=${HOST:-localhost}"$ " ; export PS1 ;

@ You could use this in a user’s .profile to make sure that the

prompt is always set correctly.

@ This form of variable substitution does not affect the value of
the variable. It performs substitution only when the variable is
unset.

Ricardo Ruiz Rodriguez Shell Scripts

Filename substitution (globbing)
Value-based variable substitution
Substitution Command and arithmetic substitution

Assigning a default value |

@ To set the value of a variable, the second form of variable
substitution must be used.

@ This form is formally described as:
${parameter:=word}
Here, parameter is the name of the variable, and word is the
default value to set the variable to if it is unset.

@ Appending the previous example, you have:
PS1=\$\{HOST:="uname -n \}"\$ " ; export PS1 HOST ;

@ After the execution of this statement, both HOST and PS1
are set.

Ricardo Ruiz Rodriguez Shell Scripts

Filename substitution (globbing)
Value-based variable substitution
Substitution Command and arithmetic substitution

Assigning a default value Il

@ This example also demonstrates the fact that the default
string to use does not have to be a fixed string but can be the
output of a command.

If this substitution did not exist in the shell, the same line
would have to be written as:

if [-z "$HOST"] ; then
HOST="uname -n" ;
fi ;
PS1="$HOST$ "; export PS1 HOST ;
@ As you can see, the variable substitution form is shorter and
clearer than the explicit form.

Ricardo Ruiz Rodriguez Shell Scripts

Filename substitution (globbing)
Value-based variable substitution
Substitution Command and arithmetic substitution

Aborting due to variable errors |

@ Sometimes substituting default values can hide problems.

@ The sh supports a third form of variable substitution that
enables a message to be written to standard error when a
variable is unset. This form is formally described as:

${parameter:?message}

@ A common use of this is in shell scripts and shell functions
requiring certain variables to be set for proper execution.

@ For example, the following command exits if the variable
$HOME is unset:
: ${HOME:?” Your home directory is undefined.” }

Ricardo Ruiz Rodriguez Shell Scripts

Filename substitution (globbing)
Value-based variable substitution
Substitution Command and arithmetic substitution

Aborting due to variable errors |l

@ In addition to using the variable substitution form described
previously, you are also making use of the no-op (no-op as in
no operation) command, :, which simply evaluates the
arguments passed to it.

@ Here you are checking to see whether the variable HOME is
defined. If it is not defined, an error message prints.

@ The final form of variable substitution is used to substitute
when a variable is set. Formally this is described as:
${parameter:+word}
Here parameter is the name of the variable, and word is the
value to substitute if the variable is set.

@ This form does not alter the value of the variable; it alters
only what is substituted.

Ricardo Ruiz Rodriguez Shell Scripts

Filename substitution (globbing)
Value-based variable substitution
Substitution Command and arithmetic substitution

Aborting due to variable errors |ll

@ A frequent use is to indicate when a script is running in debug
mode:
echo ${DEBUG:+" Debug is active.” }

Ricardo Ruiz Rodriguez Shell Scripts

Filename substitution (globbing)
Value-based variable substitution
Substitution Command and arithmetic substitution

Command and arithmetic substitution

Two additional forms of substitution provided by the shell are:

@ Command substitution: enables you to capture the output
of a command and substitute it in another command.

@ Arithmetic substitution: enables you to perform simple
integer mathematics using the shell.

Ricardo Ruiz Rodriguez Shell Scripts

Filename substitution (globbing)
Value-based variable substitution
Substitution Command and arithmetic substitution

Command substitution |

@ Command substitution is the mechanism by which the shell
performs a given set of commands and then substitutes their
output in the place of the commands.

@ Command substitution is performed when a command is given

as: "~ command’
Here command, can be a simple command, a pipeline, or a
list.

@ Make sure that you are using the backquote, not the single
quote character, when performing command substitution.

o Command substitution is generally used to assign the output
of a command to a variable:

Ricardo Ruiz Rodriguez Shell Scripts

Filename substitution (globbing)
Value-based variable substitution
Substitution Command and arithmetic substitution

Command substitution Il

DATE="date"

USERS="who | wc -1°
UP="date ; uptime~

grep ~id -un” /etc/passwd

Ricardo Ruiz Rodriguez Shell Scripts

Filename substitution (globbing)
Value-based variable substitution
Substitution Command and arithmetic substitution

Arithmetic substitution |

@ In ksh and bash, the shell enables integer arithmetic to be
performed. This avoids having to run an extra program such
as expr or bc to do math in a shell script.

@ This feature is not available in sh.

@ Arithmetic substitution is performed when the following form
of command is given:
$((expression))

@ Expressions are evaluated according to standard mathematical
conventions.

@ Following are the operators listed in order of precedence:

*
/v y Ty +1 ()
Ricardo Ruiz Rodriguez Shell Scripts

Filename substitution (globbing)
Value-based variable substitution
Substitution Command and arithmetic substitution

Arithmetic substitution Il

@ You use the following command as an illustration of the
operators and their precedence:

foo=%((((5+3*2)-4)/2))
@ After this command executes the value of foo is set to 3.

Because this is integer arithmetic, the value is not 3.5, and
because of operator precedence the value is not 6.

Ricardo Ruiz Rodriguez Shell Scripts

Quoting schemes
Quoting rules and situations

Quoting

Introduction

@ The way the shell performs substitution is generally useful,
but sometimes it is necessary to turn off shell substitution and
let each character stand for itself.

@ Turning off the special meaning of a character is called
quoting, and it can be done three ways:

@ Using the backslash (\).
@ Using the single quote (').
© Using the double quote ().

@ Quoting can be a very complex issue, even for experienced
UNIX programmers.

@ You will learn a series of simple rules to help you understand
when quoting is needed and how to do it correctly.

Ricardo Ruiz Rodriguez Shell Scripts

Quoting schemes
Quoting rules and situations

Quoting

Quoting with backslashes |

@ Here is a list of most of the shell special characters (also
called metacharacters):

*x 7 [1"'""\N$; & ()| "~ <>new-line space tab

Watch what happens if you add one of them to the echo
command:

$ echo Hello world

$ echo Hello; world

@ The semicolon (;) character tells the shell that it has reached
the end of one command and what follows is a new command.
This character enables multiple commands on one line.

Ricardo Ruiz Rodriguez Shell Scripts

Quoting schemes
Quoting rules and situations

Quoting

Quoting with backslashes Il

@ The backslash causes the ; character to be handled as any
other normal character.
$ echo Hello\; world

@ To display any shell special character reliably from echo, you
must escape it, that is, precede it by a backslash.

@ Using the backslash quotes the character that follows it, using
it as a literal character.

@ Each of the special shell characters previously listed causes a
different problem symptom if you try to echo it without
quoting it.

@ This need to quote special characters occurs in many other
UNIX commands.

Ricardo Ruiz Rodriguez Shell Scripts

Quoting schemes
Quoting rules and situations

Quoting

Using single quotes |

@ Here is an echo command that must be modified because it
contains many special shell characters:

echo <-$1250.%x>; (update?) [yln]

Putting a backslash in front of each special character is
tedious and makes the line difficult to read:

echo \<-\$1250.**\>\; \(update\?\) \[y\In\]

@ There is an easy way to quote a large group of characters.
Put a single quote (') at the beginning and at the end of the
string:

echo '<-$1250.**>; (update?) [y|n]'

Ricardo Ruiz Rodriguez Shell Scripts

Quoting schemes
Quoting rules and situations

Quoting

Using single quotes Il

Any characters within single quotes are quoted just as if a
backslash is in front of each character.

@ If a single quote appears within a string to be output, you
should not put the whole string within single quotes:
$ echo 'It's Friday’
This fails and only outputs the following character, while the
cursor waits for more input:
$> _

@ The > sign is the secondary shell prompt (as stored in the
PS2 shell variable), and it indicates that you have entered a
multiple-line command (what you have typed so far is
incomplete).

Ricardo Ruiz Rodriguez Shell Scripts

Quoting schemes
Quoting rules and situations

Quoting

Using single quotes IlI

@ Single quotes must be entered in pairs, and their effect is to
quote all characters that occur between them.

@ In case you are wondering, you cannot get around this by
putting a backslash before an embedded single quote.

@ You can correct the previous example by not using single
quotes as the method of quoting.

@ Use one of the other quoting characters, such as the
backslash:
$ echo It\'s Friday

Ricardo Ruiz Rodriguez Shell Scripts

Quoting schemes
Quoting rules and situations

Quoting

Using double quotes |

@ Single quotes can sometimes take away too much of the
shell’s special conveniences.

@ The following echo statement contains many special
characters that must be quoted in order to use them literally:

$ echo '$USER owes <-$1250.*x*>;
[as of (“date +/m/%d)]

The output using single quotes is easy to predict-what you
see is what you get:

$USER owes <-$1250.*x>; [as of (“date +%m/%d”)]

@ Single quotes prevent variable substitution, so $USER is not
replaced by the specific user name stored in that variable.

Ricardo Ruiz Rodriguez Shell Scripts

Quoting schemes
Quoting rules and situations

Quoting

Using double quotes I

@ Single quotes also prevent command substitution, so the
attempt to insert the current month and day using the date
command within backquotes fails.

@ Double quotes are the answer to this situation. Double quotes
take away the special meaning of all characters except the
following;:

\$ for parameter substitution.

Backquotes for command substitution.

\$ to enable literal dollar signs.

\" to enable literal backquotes.

\" to enable embedded double quotes.

\\to enable embedded backslashes.

All other \characters are literal (not special).

Ricardo Ruiz Rodriguez Shell Scripts

Quoting schemes
Quoting rules and situations

Quoting

Using double quotes Il

@ Watch what happens if you use double quotes like this:

$ echo "$USER owes <-$1250.%x*>;
[as of (“date +%m/%d)]"

$ echo "$USER owes <-\$1250.%*%*>;
[as of (“date +Ym/%d>)1"

$ echo "The DOS directory is \"\\windows\\temp\""

Ricardo Ruiz Rodriguez Shell Scripts

Quoting schemes
Quoting rules and situations

Quoting

Quoting rules and situations |

@ Quoting ignores word boundaries:
$ echo "Hello; world"

$ echo Hel"lo; w"orld
@ Combining quoting in commands:
$ echo The '$USER' variable contains this value \>

n | $USER| n

@ Embedding spaces in a single argument:

Ricardo Ruiz Rodriguez Shell Scripts

Quoting schemes
Quoting rules and situations

Quoting

Quoting rules and situations Il

$ echo Name Address

$ echo "Name Address"

$ mail -s Meeting tomorrow juan pedro
< meeting.notice

$ mail -s Meeting\ tomorrow juan pedro
< meeting.notice

$ mail -s 'Meeting tomorrow' juan pedro
< meeting.notice

$ mail -s "Meeting tomorrow" juan pedro
< meeting.notice

Ricardo Ruiz Rodriguez Shell Scripts

Quoting schemes
Quoting rules and situations

Quoting

Quoting rules and situations Il

@ The newline character is found at the end of each line of a
UNIX shell script; it is a special character that tells the shell
that it has encountered the end of the command line.

@ Normally you can’t see the newline character.
@ You can quote the newline character to enable a long
command to extend to the next line:

$ cp filel file2 file3 file4 fileb file6 file7 \
> file8 file9 /tmp

Notice the last character in the first line is a backslash, which
is quoting the newline character implied at the end of the line.

Ricardo Ruiz Rodriguez Shell Scripts

Quoting schemes
Quoting rules and situations

Quoting

Quoting rules and situations IV

@ The shell recognizes this and displays > (the PS2 prompt) as
confirmation that you are entering a continuation line or
multiple-line command.

@ You must not enable any spaces after the final backslash for
this to work. A quoted newline is an argument separator just
like a space or tab. Here is another example:

$ echo 'Line 1
> Line 2'

@ Quoting the special character takes away its wildcard meaning.

@ You should always quote your regular expressions to protect
them from shell filename expansion

Ricardo Ruiz Rodriguez Shell Scripts

	Manipulating file atributes
	Introduction
	File types
	Permissions

	Processes
	Introduction
	Foreground and background processes
	Dealing with processes

	Variables
	Overview
	Array variables
	Further considerations
	Types of variables

	Substitution
	Filename substitution (globbing)
	Value-based variable substitution
	Command and arithmetic substitution

	Quoting
	Quoting schemes
	Quoting rules and situations

