Sistemas Operativos
Shell Scripts

Ricardo Ruiz Rodriguez

Instituto de Computacién
Universidad Tecnolégica de la Mixteca
Primavera 2014

Ricardo Ruiz Rodriguez Shell Scripts

Indice |

Flow control (selection)
m The if statement
m The case statement

Flow control (loops)
m The while loop
m The for and select loops
m Loop control

Parameters
m Introduction
m Special variables
m Options, arguments and parsing

Ricardo Ruiz Rodriguez Shell Scripts

Flow control (selection) The if
The c

Introduction |

@ The order in which commands execute in a shell script is
called the flow of the script.

@ In the scripts that you have looked at so far, the flow is always
the same because the same set of commands executes every
time.

@ In most scripts, you need to change the commands that
execute depending on some condition provided by the user or
detected by the script itself.

@ When you change the commands that execute based on a
condition, you change the flow of the script.

@ Two powerful flow control mechanics are available in the shell:

@ The if statement.
@ The case statement.

Ricardo Ruiz Rodriguez Shell Scripts

Flow control (selection) The if

Introduction |l

@ The if statement is normally used for the conditional
execution of commands.

@ The case statement enables any number of command
sequences to be executed depending on which one of several
patterns matches a variable first.

Ricardo Ruiz Rodriguez Shell Scripts

Flow control (selection) The if statement

The case statement

The if statement |

@ The if statement performs actions depending on whether a
given condition is true or false.

@ Because the return code of a command indicates true (return
code is zero) or false (return code is nonzero), one of the
most common uses of the if statement is in error checking.

@ The basic if statement syntax follows:

if listl then
list2

elif 1list3 then
list4

else
listh

fi

Ricardo Ruiz Rodriguez Shell Scripts

Flow control (selection) The if statement

The case statement

The if statement 1l

@ Both the elif and the else statements are optional.

o If you have an elif statement, you don’t need an else
statement and vice versa.

@ An if statement can be written with any number of elif
statements.

@ The flow control for the general if statement follows:

@ listl is evaluated.

@ |If the exit code of listl is 0, indicating a true condition, list2 is
evaluated and the if statement exits.

© Otherwise, list3 is executed and its exit code is checked.

Q@ If list3 returns 0, list4 executes and the if statement exits.

@ |If list3 does not return 0, /isth executes.

@ Because the shell considers an if statement to be a list, you
can write it all in one line as follows:

Ricardo Ruiz Rodriguez Shell Scripts

Flow control (selection) The if statement

The case statement

The if statement 1l

if 1listl ; then list2 ; elif 1ist3 ; then 1list4 ;
else 1listb ; fi ;

@ Usually this form is used only for short if statements.

Ricardo Ruiz Rodriguez Shell Scripts

Flow control (selection) The if statement

The case statement

The if statement examples |

@ See example ex-10-01_if.sh

@ See example ex-10-02_if.sh
@ Four common errors can occur when using the if statement:
@ Onmitting the semicolon (;) before the then statement in the
single line form.
@ Using else if or elsif instead of elif.
© Omitting the then statement when an elif statement is used.
@ Writing if instead of fi at the end of an if statement.

Ricardo Ruiz Rodriguez Shell Scripts

Flow control (selection) The if statement

The case statement

Using test |

@ Most often, the list given to an if statement is one or more
test commands, which are invoked by calling the test
command as follows:

test expression
Here expression is constructed using one of the special options
to the test command.

@ The test command returns either a 0 (true) or a 1 (false)
after evaluating an expression.
@ A shorthand for the test command is the [command:
[expression |
Here expression is any valid expression that the test command
understands.

Ricardo Ruiz Rodriguez Shell Scripts

Flow control (selection) The if statement

The case statement

Using test Il

@ This shorthand form is the most common form of test that
you can encounter.

@ The types of expressions understood by test can be broken
into three types:

@ File tests.
@ String comparisons.
© Numerical comparisons.

@ When using the [shorthand for test, the space after the open
bracket ([) and the space before the close bracket (]) are
required.

Ricardo Ruiz Rodriguez Shell Scripts

Flow control (selection) The if statement

The case statement

File tests |

@ File test expressions test whether a file fits some particular
criteria.

@ The general syntax for a file test is:
test option file
or
[option file]
Here option is one of the test command and file is the name
of a file or directory.
The file test options for the test command are the following:
@ -b file: true if file exists and is a block special file.
o -c file: true if file exists and is a character special file.

o -d file: true if file exists and is a directory.

Ricardo Ruiz Rodriguez Shell Scripts

Flow control (selection) The if statement

The case statement

File tests Il

o -e file: true if file exists.

o -f file: true if file exists and is a regular file.

o -g file: true if file exists and has its SGID bit set.

@ -h file: true if file exists and is a symbolic link.

o -k file: true if file exists and has its "sticky” bit set.

o -p file: true if file exists and is a named pipe.

o -r file: true if file exists and is readable.

o -s file: true if file exists and has a size greater than zero.
o -u file: true if file exists and has its SUID bit set.

o -w file: true if file exists and is writable.

o -x file: true if file exists and is executable.

°

-0 file: true if file exists and is owned by the effective user ID.

Ricardo Ruiz Rodriguez Shell Scripts

Flow control (selection) The if statement

The case statement

File tests Il

if [-d /home/rruiz/bin] ; then
PATH="$PATH: /home/rruiz/bin" ;
fi

Ricardo Ruiz Rodriguez Shell Scripts

Flow control (selection) The if statement

The case statement

String comparisons |

@ The test command also supports simple string comparisons.
@ There are two main forms:

@ Checking whether a string is empty.
@ Checking whether two strings are equal.

e A string cannot be compared to an expression using the test
command. The case statement, covered later, has to be used
instead.

The test options relating to string comparisons are the following:

@ -z string: true if string has zero length.
@ -n string: true if string has nonzero length.
© stringl = string2: true if the strings are equal.

@ stringl != string2: true if the strings are not equal.

Ricardo Ruiz Rodriguez Shell Scripts

Flow control (selection) The if statement

The case statement

String comparisons ||

@ The syntax of the first form is:
test option string
or
[option string]
Here option is either -z or -n and string is any valid shell
string.
@ See example ex-10-03_test.sh.

@ Notice that the variable $FRUIT_BASKET is quoted in this
example. This is required in the event that the variable is
unset (why?).

@ The shell does not quote a null value and:

[-z]#[-z""]

@ The test command enables you to determine whether two

strings are equal.

Ricardo Ruiz Rodriguez Shell Scripts

Flow control (selection) The if statement

The case statement

String comparisons |lI

@ Two strings are considered equal if they contain exactly the
same sequence of characters.
@ The basic syntax for checking whether two strings are equal is:
test stringl = string2
or
[stringl = string2]
Here stringl and string2 are the two strings being compared.

@ See example ex-10-03_test.sh.

Ricardo Ruiz Rodriguez Shell Scripts

Flow control (selection) The if statement

The case statement

Numerical comparisons |

@ The test command enables you to compare two integers.

@ The basic syntax is:
test intl operator int2
or
[intl operator int2]
Here intl and int2 can be any positive or negative integers
and operator is one of the following operators:
intl -eq int2: true if intl equals int2.
intl -ne int2: true if intl is not equal to int2.
intl -It int2: true if intI is less than int2.
intl -le int2: true if intl is less than or equal to int2.
intl -gt int2: true if intl is greater than int2.
intl -ge int2: true if intl is greater than or equal to int2.

000000

Ricardo Ruiz Rodriguez Shell Scripts

Flow control (selection) The if statement

The case statement

Numerical comparisons Il

o If either intl or int2 is a string, not an integer, it is treated as
0.

@ Among the most common tasks in a shell script are executing
a program and checking its return status.

@ By using the numerical comparison operators, you can check
the return or exit status of a command and perform different
actions when a command is successful and when a command
is unsuccessful.

o If you execute this command on the command line, you can
see any error messages and intervene to fix the problem.

@ In a shell script, the error message is ignored and the script
continues to execute. For this reason, it is necessary to check
whether a program exited successfully.

Ricardo Ruiz Rodriguez Shell Scripts

Flow control (selection) The if statement

The case statement

Numerical comparisons Il|

@ As you saw with the test command, an exit status of 0 is
successful, whereas nonzero values indicate some type of
failure.

@ The exit status of the last command is stored in the variable
$?, so you can check whether a command was successful as
follows

if [$? -eq 0 1 ; then
echo "Command was successful." ;
else
echo "An error was encountered."
exit
fi

Ricardo Ruiz Rodriguez Shell Scripts

Flow control (selection) The if statement

The case statement

Compound expressions |

@ So far you have seen individual expressions, but many times
you need to combine expressions in order to satisfy a
particular expression.

@ When two or more expressions are combined, the result is
called a compound expression.

@ You can create compound expressions using the test
command’s built in operators, or you can use the conditional
execution operators && and |.

@ Also you can create a compound expression that is the
negation of another expression by using the ! operator.

@ Operators for creating compound expressions are the
following:

Ricardo Ruiz Rodriguez Shell Scripts

Flow control (selection) The if statement

The case statement

Compound expressions ||

@ ! expr: true if expris false. The expr can be any valid test
command.

@ exprl -a expr2: true if both exprl and expr2 are true.

© exprl -o expr2: true if either exprl or expr2 is true.

@ The syntax for creating compound expressions using the
built-in operators is:
test exprl operator expr2
or
[exprl operator expr2 |
Here exprl and expr2 are any valid test expression, and
operator is either -a (a as in and) or -0 (o as in or).

Ricardo Ruiz Rodriguez Shell Scripts

Flow control (selection) The if statement

The case statement

Compound expressions Il

@ The syntax for creating compound expressions using the
conditional operators is:
test exprl operator test exprl
or
[exprl] operator [expr2]
Here exprl and expr2 are any valid test expression, and
operator is either && (and) or || (or).

if [-z "$DTHOME"] && [-d /usr/dt] ; then
DTHOME=/usr/dt ;

fi

if [-z "$DTHOME" -a -d /usr/dt] ; then

DTHOME=/usr/dt ;
fi

Ricardo Ruiz Rodriguez Shell Scripts

Flow control (selection) The if statement

The case statement

Compound expressions |V

@ The final type of compound expression consists of negating an
expression.

@ Negation reverses the result of an expression. True expressions
are treated as false expressions and vice versa.
@ The basic syntax of the negation operator is:
test ! expr
or
[! expr]
Here expr is any valid test expression.

@ A simple example is the following command:

Ricardo Ruiz Rodriguez Shell Scripts

Flow control (selection) The if statement

The case statement

Compound expressions V

if [! -d $HOME/bin] ; then
mkdir $HOME/bin ;
fi

test ! -d $HOME/bin && mkdir $HOME/bin

Ricardo Ruiz Rodriguez Shell Scripts

Flow control (selection) The if statement
The case statement

Syntax |

@ The case statement is the other major form of flow control
available in the shell.

@ The basic syntax is:
case word in
patternl)
listl
pattern2)
list2
esac

@ Here the string word is compared against every pattern until a
match is found.

Ricardo Ruiz Rodriguez Shell Scripts

Flow control (selection) The if statement

The case statement

Syntax |l

@ The list following the matching pattern executes. If no
matches are found, the case statement exits without
performing any action.

@ There is no maximum number of patterns, but the minimum
is one.

@ When a list executes, the command ;; indicates that program
flow should jump to the end of the entire case statement.
This is similar to break in the C programming language.

@ Some programmers prefer to use the form:

case word in
patternl) listl ;;
pattern2) 1list2 ;;
esac

Ricardo Ruiz Rodriguez Shell Scripts

Flow control (selection) The if statement

The case statement

Syntax |lI

@ This form should be used only if the list of commands to be
executed is short.

@ See example ex-10-04_case.sh

Ricardo Ruiz Rodriguez Shell Scripts

Flow control (selection) The if statement

The case statement

Using patterns |

@ In the example (first section), you used fixed strings as the
pattern.

@ If used in this fashion the case statement degenerates into an
if statement. For example, the if statement:

if ["$FRUIT" = apple] ; then
echo "Apple pie is quite tasty."
elif ["$FRUIT" = banana] ; then
echo "I like banana nut bread."
elif ["$FRUIT" = kiwi] ; then
echo "New Zealand is famous for kiwi."
fi

Ricardo Ruiz Rodriguez Shell Scripts

Flow control (selection) The if statement

The case statement

Using patterns Il

is more verbose, but the real power of the case statement
does not lie in simplifying if statements.

@ The power of case statement lies in the fact that it uses
patterns to perform matching.

@ A pattern is a string that consists of regular characters and
special wildcard characters.

@ The pattern determines whether a match is present.

@ The patterns can use the same special characters as patterns
for pathname expansion covered in " Substitution”.

@ along with the or operator |.

@ Some default actions can be performed by giving the *
pattern, which matches anything.

Ricardo Ruiz Rodriguez Shell Scripts

Flow control (selection) The if statement

The case statement

Using patterns IlI

case "$TERM" in
*term)
TERM=xterm ;;
network|dialup|unknown|vt [0-9] [0-9] [0-9])
TERM=vt100 ;;
esac

@ See example ex-10-04_case.sh

Ricardo Ruiz Rodriguez Shell Scripts

The while loop
Flow control (loops) The for and select loops
Loop control

Introduction |

@ Loops enable you to execute a series of commands multiple
times.
@ Two main types of loops are:
@ The while loop.
@ The for loop.
@ The while loop enables you to execute a set of commands
repeatedly until some condition occurs.
@ It is usually used when you need to manipulate the value of a
variable repeatedly.
@ The for loop enables you to execute a set of commands
repeatedly for each item in a list.
@ One of its most common uses is in performing the same set of
commands for a large number of files.

Ricardo Ruiz Rodriguez Shell Scripts

The while loop
Flow control (loops) The for and select loops
Loop control

Introduction |l

@ In addition to these two types of loops, ksh and bash support
an additional type of loop called the select loop.

@ The select loop frequently presents a menu of choices to a
shell scripts user.

Ricardo Ruiz Rodriguez Shell Scripts

The while loop
Flow control (loops) The for and select loops
Loop control

The while loop |

@ The basic syntax of the while loop is:

while command
do

list
done

Here command is a single command to execute, whereas list is
a set of one or more commands to execute.

@ Although command can be any valid UNIX command, it is
usually a test expression.

@ list is commonly referred to as the body of the while loop
because it contains the heart of the loop.

Ricardo Ruiz Rodriguez Shell Scripts

The while loop
Flow control (loops) The for and select loops
Loop control

The while loop Il

@ The do and done keywords are not considered part of the
body of the loop because the shell uses them only for
determining where the while loop begins and ends.

@ If both command and list are short, the while loop is written
in a single line as follows:

while command ; do list ; domne

@ See example ex-11-01_while.sh

Ricardo Ruiz Rodriguez Shell Scripts

The while loop
Flow control (loops) The for and select loops
Loop control

Nesting while loops |

@ It is possible to use a while loop as part of the body of
another while loop as follows:

while commandl ; # this is loopl, the outer loop

do
listl
while command2 ; # this is loop2, the inner loop
do
list2
done
list3
done

Ricardo Ruiz Rodriguez Shell Scripts

The while loop
Flow control (loops) The for and select loops
Loop control

Nesting while loops Il

Here commandl and command?2 are single commands to
execute, whereas listl, list2, and list3 are a set of one or more
commands to execute. Both list1 and list3 are optional.

@ Here you have two while loops, loopl and loop2. Usually
loopl is referred to as the main loop or outer loop, and loop2
is referred to as the inner loop.

@ When describing the inner loop (loop2), many programmers
say that it is nested one level deep.

@ The term nested refers to the fact that loop2 is located in
the body of loopl.

@ If you had a loop3 located in the body of loop2, it would be
nested two levels deep. The level of nesting is relative to the
outermost loop.

Ricardo Ruiz Rodriguez Shell Scripts

The while loop
Flow control (loops) The for and select loops
Loop control

Nesting while loops IlI

@ There are no restrictions on how deeply nested loops can be,
but you should try to avoid nesting loops more deeply than
four or five levels to avoid difficulties in finding and fixing
problems in your script.

@ See example ex-11-02_while.sh and ex-11-02-2_while.sh

Ricardo Ruiz Rodriguez Shell Scripts

The while loop
Flow control (loops) The for and select loops
Loop control

Validating user input |

@ Say that you need to write a script that needs to ask the user
for the name of a directory. You can use the following steps to
get information from the users:

@ Ask the user a question.

@ Read the user's response.

© Check to see whether the user responded with the name of a
directory.

@ What should you do when the user gives you a response that
is not a directory?
@ One of the most common uses for the while loop is to check

whether user input has been gathered correctly. Usually a
strategy similar to the following is employed:

@ Set a variable's value to null.
@ Start a while loop that exits when the variable’s value is not
null.

Ricardo Ruiz Rodriguez Shell Scripts

The while loop
Flow control (loops) The for and select loops
Loop control

Validating user input |l

(8]
Q
(5]
o

In the while loop, ask the user a question and read in the
users response.

Validate the response.

If the response is invalid the variable’s value is set to null. This
enables the while loop to repeat.

If the response is valid, the variable’s value is not changed. It
continues to hold the user’s response. Because the variable's
value is not null, the while loop exits.

@ See example ex-11-03_while.sh.

Ricardo Ruiz Rodriguez Shell Scripts

The while loop
Flow control (loops) The for and select loops
Loop control

The until loop |

@ The while loop is perfect for a situation where you need to
execute a set of commands while some condition is true.

@ Sometimes you need to execute a set of commands until a
condition is true.

@ A variation on the while loop available only in ksh and bash,
the until loop provides this functionality.

@ Its basic syntax is:

until command
do

list
done

Ricardo Ruiz Rodriguez Shell Scripts

The while loop
Flow control (loops) The for and select loops
Loop control

The until loop Il

Here command is a single command to execute, whereas /ist is
a set of one or more commands to execute.

@ Although command can be any valid UNIX command, it is
usually a test expression.

@ If both command and list are short, the until loop can be
written on a single line as follows:

until command ; do list ; done
@ See example ex-11-03_until.sh.

@ The until loop offers no advantages over the equivalent while
loop.

Ricardo Ruiz Rodriguez Shell Scripts

The while loop
Flow control (loops) The for and select loops
Loop control

The for and select loops

@ Unlike the while loop, which exits when a certain condition is
false, both the for and select loops operate on lists of items.

@ The for loop repeats a set of commands for every item in a
list.

@ The select loop enables the user to select an item from a list.

Ricardo Ruiz Rodriguez Shell Scripts

The while loop
Flow control (loops) The for and select loops
Loop control

The for loop |

@ The basic syntax is:

for name in wordl word2 ... wordN
do

list
done

Here name is the name of a variable and wordl to wordN are
sequences of characters separated by spaces (words).

@ Each time the for loop executes, the value of the variable
name is set to the next word in the list of words, word1 to
wordN. The first time, name is set to wordl; the second time,
it's set to word2; and so on.

Ricardo Ruiz Rodriguez Shell Scripts

The while loop
Flow control (loops) The for and select loops
Loop control

The for loop Il

@ This means that the number of times a for loop executes
depends on the number of words that are specified.

@ In each iteration of the for loop, the commands specified in
list are executed.

@ You can also write the entire loop on a single line as follows:

for name in wordl word2 ... wordN ; do list ; domne

If list and the number of words are short, the single line form
is often chosen; otherwise, the multiple-line form is preferred.

@ See example ex-11-05_for.sh and compares with
ex-11-01_while.sh.

Ricardo Ruiz Rodriguez Shell Scripts

The while loop
Flow control (loops) The for and select loops
Loop control

Manipulating a set of files |

@ Say that you need to copy a bunch of files from one directory
to another and change the permissions on the copy.

e What would you do?

Ricardo Ruiz Rodriguez Shell Scripts

The while loop
Flow control (loops) The for and select loops
Loop control

Manipulating a set of files Il

@ You could do this by copying each file and changing the
permissions manually.

@ A better solution would be to determine the commands you
need to execute in order to copy a file and change its
permissions and then have the computer do this for every file
you were interested in.

@ In fact this is one of the most common uses of the for loop:
iterating over a set of file names and performing some
operations on those files.

@ The procedure to do this follows:

@ Create a for loop with a variable named file or FILE. Other
favored names include i, j, and k. Usually the name of the
variable is singular.

Ricardo Ruiz Rodriguez Shell Scripts

The while loop
Flow control (loops) The for and select loops
Loop control

Manipulating a set of files Il

@ Create a list of files to manipulate. This is frequently
accomplished using the filename substitution technique
discussed in " Substitution”.

© Manipulate the files in the body of the loop.

@ See example ex-11-06_for2.sh

@ Notice that you are using the name FILE for the variable.
This is because each time you are dealing with a single file
from a list of files.

@ The rationale behind making the for loop’s variable singular,
such as FILE instead of FILES, is that you are dealing with
only one item from a set of items each time the loop executes.

Ricardo Ruiz Rodriguez Shell Scripts

The while loop
Flow control (loops) The for and select loops
Loop control

The select loop |

@ The select loop provides an easy way to create a numbered
menu from which users can select options.

@ It is useful when you need to ask the user to choose one or
more items from a list of choices.
@ This loop was introduced in ksh and has been adapted into
bash. It is not available in sh.
@ The basic syntax of the select loop is:
select name in wordl word2 ... wordN
do
list2
done

Ricardo Ruiz Rodriguez Shell Scripts

The while loop
Flow control (loops) The for and select loops
Loop control

The select loop I

Here name is the name of a variable and wordl to wordN are
sequences of characters separated by spaces (words). The set
of commands to execute after the user has made a selection is
specified by /ist2.

@ The execution process for a select loop is as follows:

Each item in list1 is displayed along with a number.

A prompt, usually #7?, is displayed.

When the user enters a value, SREPLY is set to that value.

If SREPLY contains a number of a displayed item, the variable

specified by name is set to the item in listl that was selected.

Otherwise, the items in list1 are displayed again.

When a valid selection is made, list2 executes.

If list2 does not exit from the select loop using one of the loop

control mechanisms such as break, the process starts over at

step 1.

Ricardo Ruiz Rodriguez Shell Scripts

(=N oK =)

©0

The while loop
Flow control (loops) The for and select loops
Loop control

The select loop Il

@ You can change the prompt displayed by the select loop by
altering the variable PS3.

o If PS3 is not set, the default prompt, #7?, is displayed.
Otherwise the value of PS3 is used as the prompt to display.

@ See example ex-11-07_select.sh

Ricardo Ruiz Rodriguez Shell Scripts

The while loop
Flow control (loops) The for and select loops
Loop control

Loop control

@ So far we have looked at creating loops and working with
loops to accomplish different tasks.

@ Sometimes you need to stop a loop or skip iterations of the
loop.

@ The commands used to control loops are:

@ break.
@ continue.

Ricardo Ruiz Rodriguez Shell Scripts

The while loop
Flow control (loops) The for and select loops
Loop control

The break command |

@ If you make a mistake in specifying the termination condition
of a while loop, it can continue forever.

e For example, say you forgot to specify the $ before the x in
the test expression:

x=0
while [x -1t 10]
do
echo $x
x= “echo "$x + 1" | bc”
done

@ This loop would continue to display numbers forever.

Ricardo Ruiz Rodriguez Shell Scripts

The while loop
Flow control (loops) The for and select loops
Loop control

The break command Il

@ A loop that executes forever without terminating executes an
infinite number of times. For this reason, such loops are called
infinite loops.

@ In most cases infinite looping is not desired and stems from
programming errors, but in certain instances they can be
useful. For example, say that you need to wait for a particular
event, such as someone logging on to a system, to occur.

@ You can use an infinite loop to check every few seconds
whether the event has occurred.

@ Because you don’t know how many times you need to execute
the loop, when the event occurs, you can exit the infinite loop
using the break command.

@ In sh, you can create infinite loops using the while loop.

Ricardo Ruiz Rodriguez Shell Scripts

The while loop
Flow control (loops) The for and select loops
Loop control

The break command Il

@ Because a while loop executes /ist while command is true,
specifying command as either : or /bin/true causes the loop
to execute forever.

@ The basic syntax of the infinite while loop is:
while
do
list
done

@ In most infinite loops, the while loop usually exits from within
list via the break command, which enables you to exit any
loop immediately.

@ See example ex-11-08_break.sh

Ricardo Ruiz Rodriguez Shell Scripts

The while loop
Flow control (loops) The for and select loops
Loop control

The break command IV

@ The break command also accepts as an argument an integer,
greater or equal to 1, indicating the number of levels to break

out of.
@ This feature is useful when nested loops are being used.

Ricardo Ruiz Rodriguez Shell Scripts

The while loop
Flow control (loops) The for and select loops
Loop control

The break command V

for 1 in1 2345
do
mkdir -p /mnt/backup/docs/ch0${i}
if [$? -eq 0] ; then
for j in doc ¢ h m pl sh
do
cp $HOME/docs/ch0${i}/*.${j}
/mnt/backup/docs/ch0${i}
if [$7 -ne 0] ; then break 2 ; fi
done
else
echo "Could not make backup directory."
fi
done

Ricardo Ruiz Rodriguez Shell Scripts

The while loop
Flow control (loops) The for and select loops
Loop control

The continue command

@ The continue command is similar to the break command,
except that it causes the current iteration of the loop to exit,
rather than the entire loop.

@ This command is useful when an error has occurred but you
want to try to execute the next iteration of the loop.

@ The loop in the example ex-11-10_continue2.sh does not exit
if one of the input files is bad.

@ See example ex-11-10_continue3.sh also.

Ricardo Ruiz Rodriguez Shell Scripts

Introduction
Special variables
Parameters Options, arguments and parsing

Introduction |

@ The general format for the invocation of programs in UNIX is:
command options files
Here command is the command name, options is any option
that you need to specify, and files is an optional list of files on
which the command should operate.

@ Because most UNIX users are familiar with this interface, you
should adhere to this format in shell scripts.

@ This means that scripts that can have options specified must
be able to read and interpret them correctly.

@ How should you address this?

Ricardo Ruiz Rodriguez Shell Scripts

Introduction
Specia bles
Parameters Options, arguments and parsing

Introduction |l

@ You have two common methods for the handling options
passed to a shell script:

@ Handle options manually using a case statement.
@ Handle options using the getopts command.
@ For scripts that support only one or two options, the first
method is easy to implement and works quite well.

@ However, many scripts allow any combination of several
options to be given. For such scripts, the getopts command
is very useful because it affords the maximum flexibility in
parsing options.

Ricardo Ruiz Rodriguez Shell Scripts

Introduction
Special variables
Parameters Options, arguments and parsing

Special variables |

@ The shell defines several special variables that are relevant to
option parsing.

@ In addition to these, a few variables give the status of
commands that the script executes.
The special shell variables are:

@ 350 The name of the command being executed. For shell
scripts, this is the path with which it was invoked.

@ %n These variables correspond to the arguments with which a
script was invoked. Here n is a positive decimal number
corresponding to the position of an argument (the first
argument is $1, the second argument is $2, and so on).

@ $# The number of arguments supplied to a script.

Ricardo Ruiz Rodriguez Shell Scripts

Introduction
Special variables
Parameters Options, arguments and parsing

Special variables |l

@ $* All the arguments are double quoted. If a script receives
two arguments, $* is equivalent to $1 $2.

@ $0 All the arguments are individually double quoted. If a
script receives two arguments, $@ is equivalent to $1 $2.

@ $7 The exit status of the last command executed.

@ 3% The process number of the current shell. For shell scripts,
this is the process ID under which they are executing.

@ $! The process number of the last background command.

Ricardo Ruiz Rodriguez Shell Scripts

Introduction
Special variables
Parameters Options, arguments and parsing

Using $0 |

@ The $0 variable is commonly used to determine the behavior
of scripts that can be invoked with more than one name.

o Consider the following script:

#!/bin/sh
case $0 in
*1listtar) TARGS="-tvf $1" ;;
*maketar) TARGS="-cvf $1.tar $1" ;;
esac
tar $TARGS

Ricardo Ruiz Rodriguez Shell Scripts

Introduction
Special variables
Parameters Options, arguments and parsing

Using $0 11

@ You can use this script to list the contents of a tar file (¢ as in
tape and ar as in archive, a common format for distributing
files in UNIX) or to create a tar file based on the name with
which the script is invoked.

@ The tar file to read or create is specified as the first argument,

$1.

@ | called this script mytar and made two symbolic links to it
called listtar and maketar as follows:

$ 1n -s mytar listtar
$ 1n -s mytar maketar

o If the script is invoked with the name maketar and is given a
directory or filename, a tar file is created.

Ricardo Ruiz Rodriguez Shell Scripts

Introduction
Special variables
Parameters Options, arguments and parsing

Using $0 111

@ If you had a directory called fruits with the following contents:

$ 1s fruits
apple banana mango peach pear

You can invoke the script as maketar to obtain a tar file called
fruit.tar containing this directory, by issuing the following
command:

$./maketar fruits
@ If you want to list the contents of this tar file, you can invoke

the script as follows:
$./listtar fruits.tar

Ricardo Ruiz Rodriguez Shell Scripts

Introduction
Special variables
Parameters Options, arguments and parsing

@ the output that you encounter depends on the version of tar
that is installed on your machine. Some versions include more
detail in the output than others.

@ Another common use for $0 is in the usage statement for a
script.

@ Usage statement is a short message informing the user how to
invoke the script properly.

@ All scripts used by more than one user should include such a
message. In general, the usage statement is something like
the following:

echo "Usage: $0 [options] [files]"

Ricardo Ruiz Rodriguez Shell Scripts

Introduction
Special variables
Parameters Options, arguments and parsing

Using $0 V

@ If you consider the mytar script given previously, a usage
statement would be a helpful addition, in case the script was
called with some name other than the two names it knows
about.

@ To implement this, change the case statement as follows:

case $0 in
*listtar) TARGS="-tvf $1" ;;
*maketar) TARGS="-cvf $1.tar $1" ;;
x) echo "Usage: $0 [filel|directory]"
exit O

esac

Ricardo Ruiz Rodriguez Shell Scripts

Introduction
Special variables
Parameters Options, arguments and parsing

@ Thus, if the script is invoked as just mytar, you see following
message:

Usage: mytar [file|directory]

@ Although this message describes the usage of the script
correctly, it does not inform us that the script's name was
given incorrectly.

@ There are two possible methods for rectifying this:

@ Hard coding the valid names in the "usage statement”.
@ Changing the script to use its arguments to decide in which
mode it should run.

@ To demonstrate the use of options, the next section uses the
latter method.

Ricardo Ruiz Rodriguez Shell Scripts

Introduction
Special variables
Parameters Options, arguments and parsing

Options and arguments

@ Options are given on the command line to change the
behavior of a script or program.

@ Often you will see or hear options called arguments. The
difference between the two is subtle.

@ A command's arguments are all of the separate strings or
words that appear on the command line after the command
name, whereas options are only those arguments that change
the behavior of the command.

Ricardo Ruiz Rodriguez Shell Scripts

Introduction
Special variables
Parameters Options, arguments and parsing

Dealing with arguments |

@ To illustrate the use of options, change the mytar script to use
its first argument, $1, as the mode argument and $2 as the
tar file to read or create.

@ To implement this, change the case statement as follows:
USAGE="Usage: $0 [-c|-t] [filel|directoryl]"

case "$1" in
-t) TARGS="-tvf $2" ;;
-c) TARGS="-cvf $2.tar $2" ;;
x) echo "$USAGE"
exit O

esac

Ricardo Ruiz Rodriguez Shell Scripts

Introduction
Special variables
Parameters Options, arguments and parsing

Dealing with arguments |l

@ The three major changes are:
@ All references to $1 have been changed to $2 because the
second argument is now the filename.
@ listtar has been replaced by -t.
© maketar has been replaced by -c.
@ Now running mytar produces the correct output:
Usage: ./mytar [-c|-t] [file|directory]
@ To create a tar file of the directory fruits with this version, use
the command:
$./mytar -c fruits
@ To list the contents of the resulting tar file, fruits.tar, use the
command:
$./mytar -t fruits

Ricardo Ruiz Rodriguez Shell Scripts

Introduction
Special variables
Parameters Options, arguments and parsing

Using basename |

@ Currently, the message displays the entire path with which the
shell script was invoked, but what is really required is the
name of the shell script.

@ You can correct this by using the basename command.

@ The basename command takes an absolute or relative path
and returns the file or directory name. Its basic syntax is:
basename file

@ For example:
$ basename /usr/bin/sh
prints the following:
sh
e Using basename, you can change the variable $USAGE in the
mytar script as follows:

Ricardo Ruiz Rodriguez Shell Scripts

Introduction
Special variables
Parameters Options, arguments and parsing

Using basename Il

USAGE="Usage: “basename $0° [-c|-t] [filel|directoryl"

This produces the following output:
Usage: mytar [-c|-t] [file|directory]

@ You could also have used the basename command in the first
version of the mytar script to avoid using the * wildcard
character in the case statement as follows:

#!/bin/sh
case “basename $0° in
listtar) TARGS="-tvf $1" ;;
maketar) TARGS="-cvf $1.tar $1" ;;
esac
tar $TARGS

Ricardo Ruiz Rodriguez Shell Scripts

Introduction
Special variables
Parameters Options, arguments and parsing

Using basename Il|

@ In this version, the basename command allows us to match the
exact names with which scripts can be called. This simplifies
the possible user interactions and is preferred for that reason.

@ As an illustration of a potential problem with the original
version, you can see that if the script is called:
$./makelisttar
the original version would use the first case statement, even
though it was incorrect, but the new version would fall
through and report an error.

Ricardo Ruiz Rodriguez Shell Scripts

Introduction
Special variables
Parameters Options, arguments and parsing

Additional handling |

@ Now that the mytar script uses options to set the mode in
which the script runs, there is another problem to solve.

@ What should it do if the second argument, $2, is not provided?

@ You don't have to worry about what happens if the first
argument, $1, is not provided because the case statement
deals with this situation via the default case, *.

@ The simplest method for checking the necessary number of
arguments is to see whether the number of given arguments,
$+#, matches the number of required arguments.

@ Add this check to the script:

Ricardo Ruiz Rodriguez Shell Scripts

Introduction
Special variables
Parameters Options, arguments and parsing

Additional handling Il

#!/bin/sh
USAGE="Usage: “basename $0° [-c|-t] [file|directory]"
if [$# -1t 2] ; then
echo "$USAGE"
exit 1
fi
case "$1" in
-t) TARGS="-tvf $2" ;;
-c) TARGS="-cvf $2.tar $2" ;;
*) echo "$USAGE"
exit O
esac
tar $TARGS

Ricardo Ruiz Rodriguez Shell Scripts

Introduction
Special variables
Parameters Options, arguments and parsing

Additional handling Il

@ This mytar script is mostly finished, but you can still make a
few improvements.

@ For example, it only deals with the first file that is given as an
argument, and it does not check to see whether the file
argument is really a file.

@ You can add the processing of all file arguments by using the
special shell variable $@. Start with the -t (list contents)
option.

@ The case statement now becomes:

Ricardo Ruiz Rodriguez Shell Scripts

Introduction
Special variables
Parameters Options, arguments and parsing

Additional handling IV

case "$1" in
-t) TARGS="-tvf"

for i in "$@" ; do
if [-f "$i"] ; then tar $TARGS "$i" ; fi ;

done

-c) TARGS="-cvf $2.tar $2" ;
tar $TARGS

*) echo "$USAGE" ;

exit O

esac

Ricardo Ruiz Rodriguez Shell Scripts

Introduction
Special variables
Parameters Options, arguments and parsing

Additional handling V

@ The main change is that the -t case now includes a for loop
that cycles through the arguments and checks to see whether
each one is a file. If an argument is a file, tar is invoked on
that file.

@ When examining the arguments passed to a script, two special
variables are available for inspection, $* and $0.

@ The main difference between these two is how they expand
arguments.

@ When $* is used, it simply expands each argument without
preserving quoting. This can sometimes cause a problem. If
your script is given a filename containing spaces as an
argument:

mytar -t “my tar file.tar”

Ricardo Ruiz Rodriguez Shell Scripts

Introduction
Special variables
Parameters Options, arguments and parsing

Additional handling VI

@ Using $* would mean that the for loop would call tar three
times for files named my, tar, and file.tar, instead of once for
the file you requested: my tar file.tar.

@ By using $@, you avoid this problem because it expands each
argument as it was quoted on the command line.

@ You should deal with a few more minor issues.

@ Looking closely, you see that all the arguments given to the
script, including the first argument, $1, are considered as files.

@ Because you are using the first argument as the flag to
indicate the mode in which the script runs, you should not
consider it.

@ Not only does this reduce the number of times the for loop
runs, but it also prevents the script from accidentally trying to
run tar on a file with the name -t.

Ricardo Ruiz Rodriguez Shell Scripts

Introduction
Special variables
Parameters Options, arguments and parsing

Additional handling VII

@ To remove the first argument from the list of arguments, use
the shift command. A similar change to the make mode of
the script is also required.

@ Another issue is what the script should do when an operation
fails.

@ In the case of the listing operation, if the tar cannot list the
contents of a file, skipping the file and printing an error would
be a reasonable operation.

@ Because the shell sets the variable $7 to the exit status of the
most recent command, you can use that to determine whether
a tar operation failed.

@ See example mytar2.

Ricardo Ruiz Rodriguez Shell Scripts

Introduction
Special variables
Parameters Options, arguments and parsing

Option parsing |

You have two common ways to handle the parsing of options
passed to a shell script.

@ In the first method, you can manually deal with the options
using a case statement. This method was used in the mytar
script.

@ The second method, is to use the getopts command.

@ The syntax of the getopts command is:
getopts option-string variable
Here option-string is a string consisting of all the single
character options getopts should consider, and variable is the
name of the variable that the option should be set to.

@ Usually the variable used is named OPTION.

Ricardo Ruiz Rodriguez Shell Scripts

Introduction
Special variables
Parameters Options, arguments and parsing

Option parsing |l

The process by which getopts parses the options given on the
command line is:

@ The getopts option examines all the command line arguments,
looking for arguments starting with the - character.

@ When an argument starting with the - character is found, it
compares the characters following the - to the characters
given in the option-string.

© If a match is found, the specified variable is set to the option:
otherwise, variable is set to the ? character.

@ Steps 1 through 3 are repeated until all the options have been
considered.

@ When parsing has finished, getopts returns a nonzero exit
code. This allows it to be easily used in loops.

Ricardo Ruiz Rodriguez Shell Scripts

Introduction
Special variables
Parameters Options, arguments and parsing

Option parsing Il

@ Also, when getopts has finished, it sets the variable OPTIND
to the index of the last argument.

@ Another feature of getopts is the capability to indicate
options requiring an additional parameter.

@ You can accomplish this by following the option with a :
character in the option-string. In this case, after an option is
parsed, the additional parameter is set to the value of the
variable named OPTARG.

Ricardo Ruiz Rodriguez Shell Scripts

Introduction
Special variables
Parameters Options, arguments and parsing

Using getopts |

@ To get a feeling for how getopts works and how to deal with
options, write a script that simplifies the task of uuencoding a
file.

@ uuencode it is a program that was originally used to encode
binary files (executable files) into ASCII text so that they
could be emailed or transferred via FTP.

@ First, examine the interface of this script, which makes it
easier to understand the implementation.

@ The script should be able to accept the following options:

e -f to indicate the input filename.
e -0 to indicate the output filename.
e -v to indicate the script should be verbose.

Ricardo Ruiz Rodriguez Shell Scripts

Introduction
Special variables
Parameters Options, arguments and parsing

Using getopts Il

@ The getopts command to implement these requirements is:
getopts f:o:v OPTION

@ This indicates that all the options excepy -v require an
additional parameter.
@ The variables you require in order to support this are:

o VERBOSE, which stores the value of the verbose flag. By
default this is false.

o INFILE, which stores the name of the input file.

o OUTFILE, which stores the name of the output filename. If
this value is unset, uudecode uses the name supplied in the
input file, and uuencode uses the name of the supplied input
file and append to it the .uu extension.

@ The loop to implement the preceding requirements is as
follows:

Ricardo Ruiz Rodriguez Shell Scripts

Introduction
Special variables
Parameters Options, arguments and parsing

Using getopts Il

VERBOSE=false
while getopts f:o:v OPTION ;
do
case "$0OPTION" in
f) INFILE="$0PTARG" ;;
o) OUTFILE="$OPTARG" ;;
v) VERBOSE=true ;;
\?) echo "$USAGE" ;
exit 1
esac
done

Ricardo Ruiz Rodriguez Shell Scripts

Introduction
Special variables
Parameters Options, arguments and parsing

Using getopts IV

@ Now that you have dealt with option parsing, you need to deal
with still other error conditions.

@ For example, what should your script do if the input file is not
specified?

@ The simplest answer would be to exit with an error, but with
a little more work, you can make the script much more
user-friendly.

@ If you use the fact that getopts sets the variable OPTIND to
the value of the last option that it scanned, you can have the
script assume that the first argument after this is the input
filename. If no additional arguments remain, you should exit.

@ Your error checking consists of the following lines:

Ricardo Ruiz Rodriguez Shell Scripts

Introduction
Special variables
Parameters Options, arguments and parsing

Using getopts V

shift ~echo "$OPTIND - 1" | bc”
if [-z "$1" -a -z "$INFILE"] ; then
echo "ERROR: Input file was not specified."
exit 1
fi
if [-z "$INFILE"] ; then INFILE="$1" ; fi
@ Here you use the shift command to discard the arguments
given to the script by one minus the last argument processed
by getopts. The exact number of arguments to shift is
calculated by the bc command, which is a command line
calculator.

@ Strictly speaking, you do not have to shift the arguments. It
simplifies the if statement.

Ricardo Ruiz Rodriguez Shell Scripts

Introduction
Special variables
Parameters Options, arguments and parsing

Using getopts VI

e After shifting the arguments, check whether the new $1
contains some value. If it does not, print and exit. Otherwise,
set INFILE to the filename specified by $1.

@ You also need to set the output filename, in case the -o

option was not specified. You can use variable substitution to
accomplish this:

${OUTFILE:=${INFILE}.uu}
@ Here the name of the output file is set to the input file plus
the .uu extension, if an output file is not given.
@ Note that you use the : command to prevent the shell from
trying to execute the result of the variable substitution.

@ When you have made sure that all the inputs are correct, the
actual work is quite simple. The uuencode command that you
use is:

Ricardo Ruiz Rodriguez Shell Scripts

Introduction
Special variables
Parameters Options, arguments and parsing

Using getopts VII

uuencode $INFILE $INFILE > $0UTFILE ;

@ You should also check whether the input file is really a file
before doing this command, so the actual body is:

if [-f "$INFILE"] ; then
uuencode $INFILE $INFILE > $0UTFILE;
fi

@ At this point the script is fully functional, but you still need to
add the verbose reporting. This changes the preceding if
statement to the following:

Ricardo Ruiz Rodriguez Shell Scripts

Introduction
Special variables
Parameters Options, arguments and parsing

Using getopts VIII

if [-f "$INFILE"] ; then

if ["$VERBOSE" = "true"] ; then
echo "uuencoding $INFILE to $OUTFILE..."
fi
uuencode $INFILE $INFILE > $0UTFILE ; RET=$7 ;
if ["$VERBOSE" = "true"] ; then
MSG="Failed" ;
if [$RET -eq O] ; then MSG="Done." ; fi
echo $MSG
fi

fi

@ See example uu.

Ricardo Ruiz Rodriguez Shell Scripts

Introduction
Special variables
Parameters Options, arguments and parsing

Using getopts IX

@ With this script you can uuencode files in all of the following
ways (assuming the script is called uu):
e ./uu chll.doc
e ./uu -f chll.doc
e ./uu -f chll.doc -o chll.uu

Ricardo Ruiz Rodriguez Shell Scripts

	Flow control (selection)
	The if statement
	The case statement

	Flow control (loops)
	The while loop
	The for and select loops
	Loop control

	Parameters
	Introduction
	Special variables
	Options, arguments and parsing

