

Universidad Tecnológica de la Mixteca

Clave DGP: 110506

Maestría en Modelación Matemática

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA	
	Temas selectos de cómputo científico
,	The distribution

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE LIGBIG
Optativa		TOTAL DE HORAS
Optativa	221503ED	80

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

El alumno utilizará el cómputo científico para resolver problemas mal planteados, de interpolación y de ecuaciones diferenciales.

TEMAS Y SUBTEMAS

1. Interpolación

- 1.1. Motivación.
- 1.2. Existencia, unicidad y condicionamiento.
- 1.3. Interpolación polinomial.
- 1.4. Interpolación mediante polinomios a trozos.
- 1.5. Interpolación trigonométrica.
- 1.6. Uso de software para interpolación.
- 1.7. Aplicaciones.

2. Problemas de valor propio

- 2.1. Valores y vectores propios.
- 2.2. Existencia y unicidad.
- 2.3. Sensibilidad y condicionamiento.
- 2.4. Cálculo de valores y vectores propios.
- 2.5. Descomposición en valores singulares.
- 2.6. Uso de software para problemas de valor propio.

3. Problemas de valores iniciales para ecuaciones diferenciales ordinarias

- 3.1. Ecuaciones diferenciales ordinarias
- 3.2. Existencia, unicidad y condicionamiento.
- 3.3. Solución numérica para EDOs.
- 3.4. Uso de software para resolver EDOs.
- 3.5. Aplicaciones.

4. Problemas de valores en la frontera para ecuaciones diferenciales ordinarias

- 4.1. Problemas con valores en la frontera.
- 4.2. Existencia, unicidad y condicionamiento
- 4.3. El método de disparo.
- 4.4. Método de diferencias finitas.
- 4.5. Método de colocación.
- 4.6. Método de Galerkin.
- 4.7. Problemas de Sturm-Liouville.
- 4.8. Uso de software para resolver problemas de valores en la frontera.
- 4.9. Aplicaciones

5. Ecuaciones diferenciales parciales

- 5.1. Ecuaciones diferenciales Parciales
- 5.2. Problemas dependientes del tiempo.
- 5.3. Problemas independientes del tiempo.
- 5.4. Métodos directos par sistemas lineales dispersos.

- 5.5. Métodos iterativos para sistemas lineales.
- 5.6. Comparación de métodos
- 5.7. Uso de software para resolver EDPs.

ACTIVIDADES DE APRENDIZAJE

El profesor siempre buscará un balance entre la teoría matemática detrás del método, su aplicación a problemas prácticos y su implementación computacional. Introducir al alumno a un lenguaje computacional actualizado y de alto nivel.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Se realizarán al menos dos evaluaciones parciales y una final, debe realizar un trabajo relacionado con los temas del curso. El profesor deberá tomar en cuenta la participación activa del alumno en clases y tareas, además de su puntual asistencia a las

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO)

Básica:

- 1. Scientific computing: an introductory survey, Heath, Michael T., SIAM, 2018.
- 2. Scientific computing: an introduction using Maple and MATLAB, Walter Gander, Martin J. Gander and Felix Kwok; Springer, 2014.
- 3. Numerical mathematics, Quarteroni, Alfio, Riccardo Sacco, and Fausto Saleri, Springer Science & Business Media, 2010.

Consulta:

- 1. Análisis Numérico, Burden, Richard & Faires, Douglas; Editorial Iberoamericana, 6ª Edición, 1998.
- 2. Introduction to numerical analysis, Stoer, Josef, and Roland Bulirsch, Springer Science & Business Media,

PERFIL PROFESIONAL DEL DOCENTE

Doctorado en Matemáticas o Matemáticas Aplicadas con conocimientos de programación

Vo.Bo

DR. JOSÉ ANIBAL ARIAS AGUILAR IVISION DE JEFE DE LA DIVISIÓN DE ESTUDIOS DE POSGRADO

AUTORIZO DR. AGUSTÍN SANTIAGO ALVARADO

VICE-RECTOR ACADÉMICO-CTORIA

ACADÉMICA