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Arnold, sección 2.1: Introduction to functions.

Evaluación de expresiones algebraicas
Siga el modelo del texto (Ejemplos 2.1.8, 2.1.9 y 2.1.10) para redactar las
respuestas; no basta con escribir el resultado.

1. Dada f(x) = x3 + 3x2 − 5, calcule f(6).
2. Dada g(x) = (x + 3)/(2x− 5), calcule g(−2).
3. Dada h(x) = 5x− 3, determine h(2b− 5).

Dominio de una expresión
Recuerde que el dominio de una expresión es el conjunto donde “no hay problema”
o “no se marca error” al sustituir los valores de equis.

1. ¿Cuál es el dominio de la expresión f(x) = x2 + 3x− 4?
2. ¿Cuál es el dominio de la expresión g(x) =

√
x− 1? (Aquí piense qué

sucede si intenta uno poner x = 0, 0.1, 0.2, . . ., ¿hasta dónde ya se puede
extraer la raíz?).

3. ¿Cuál es el dominio de la expresión h(x) = x/(x + 3)?

Abramson, sección 1.5: Polynomials

Crear un polinomio
Usando Random.org elija:

1. El grado de un polinomio, entre 3 y 10.
2. Cuántos términos tendrá el polinomio (entre 1 y uno más que el número

que salió en el inciso anterior).
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3. Los coeficientes, entre −5 y 5, del término de mayor grado al de menor.
4. Escriba el polinomio que resulta, y señale cuál es el término principal y el

coeficiente principal.

Por ejemplo, cuando lo intenté, me salió así.

1. Grado: 6.
2. El número de términos me sale es 6.
3. Los coeficientes los voy eligiendo hasta que obtengo los seis coeficientes no

nulos: 1, −3, 2, 3, −1, 4.
4. El polinomio que me queda es x6 − 3x5 + 2x4 + 3x3 − x2 + 4x. El término

principal es x6, y el coeficiente principal es 1.

Operaciones aritméticas con polinomios
Genere dos polinomios de grado cuatro eligiendo como coeficientes diez números
entre −10 y 10 con Random.org, y encuentre su suma, su diferencia y su producto.

Por ejemplo, cuando los solicité me dio −4, −3, −6, 0, 2, 5, −8, 10, −8, −6,
por lo que los polinomios quedarían p(x) = −4x4 − 3x3 − 6x2 + 2 y q(x) =
5x4 − 8x3 + 10x2 − 8x− 6. La suma es

p(x) + q(x) = (−4 + 5)x4 + (−3− 8)x3 + (−6 + 10)x2 − 8x + (2− 6)
= x4 − 11x3 + 4x2 − 8x− 4,

la resta es
p(x)− q(x) = (−4− 5)x4 + (−3− (−8))x3 + (−6− 10)x2 − 8x + (2− (−6))

= −9x4 + 5x3 − 16x2 + 8x + 8

y finalmente el producto es

p(x)q(x) = −4x4(5x4 − 8x3 + 10x2 − 8x− 6)− 3x3(5x4 − 8x3 + 10x2 − 8x− 6)
− 6x2(5x4 − 8x3 + 10x2 − 8x− 6) + 2(5x4 − 8x3 + 10x2 − 8x− 6)

= (−20x8 + 32x7 − 40x6 + 32x5 + 24x4)
− (15x7 − 24x6 + 30x5 − 24x4 − 18x3)
− (30x6 − 48x5 + 60x4 − 48x3 − 36x2)
+ (10x4 − 16x3 + 20x2 − 16x− 12)

= −20x8 + 17x7 − 46x6 + 50x5 − 2x4 + 50x3 + 56x2 − 16x− 12.

Binomios al cuadrado
Usando Random.org elija tres números: el primero, a, entre 1 y 5, el segundo, b,
entre −5 y 5 (descartando al 0) y el tercero, c, entre 1 y 5. Forme el binomio
ax + (b/c) y elévelo al cuadrado directamente. Repita esto tres veces.
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Por ejemplo, a mí me salieron a = 1, b = −3 y c = 5, por lo que hay que elevar
el trinomio x− 3/5 al cuadrado. Para ello, tenemos

1. El cuadrado del primer término, x2.
2. El doble producto del primer término por el segundo, 2x(−3/5) = −(6/5)x.
3. El cuadrado del segundo término, (3/5)2 = 9/25.

Por lo tanto, (x− 3/5)2 = x2 − (6/5)x + 9/25.

Producto de binomios conjugados
Usando la página Random.org, elija dos números a y b al azar entre 1 y 6 y
con ellos escriba el producto de binomios conjugados (ax + b)(ax− b) y obtenga
directamente el producto escribiéndolo como diferencia de cuadrados. Haga estos
tres veces.

Por ejemplo yo obtuve a = 6 y b = 6, por lo tanto (6x+6)(6x−6) = (6x)2−62 =
36x2 − 36.

Abramson, sección 1.6: Factoring Polynomials.

Máximo factor común
Factorice encontrando el máximo factor común.

1. 14x + 4xy − 18xy2.
2. 30x3y − 45x2y2 + 135xy3.
3. 36j4k2 − 18j3k3 + 54j2k4.

Por ejemplo, para factorizar 49mb2 − 35m2ba + 77ma2:

1. El máximo factor o divisor común de 49, 35 y 77, según sus factorizaciones
en números primos, es 7.

2. El máximo factor común de mb2, m2ba y ma2 es m, pues es la única literal
que aparece en las tres expresiones, y 1 es el menor exponente con el que
aparece.

3. Ahora vemos cómo cada sumando se escribe como un producto con los
máximos factores comunes como factores:
1. 49mb2 = 7m(b2).
2. 35m2ba = 7m(5mba).
3. 77ma2 = 7m(11a2).

4. Por lo tanto, la factorización queda 7m(b2 − 5mba + 11a2).
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Factorización de trinomios con coeficiente principal uni-
tario
Para factorizar el trinomio x2− 7x + 6, hacemos una lista de los posibles factores
de 6, para ver cuánto suman y si podemos encontrar un par que sumados den
−7.

1. 1, 6; suma: 7.
2. −1, −6, suma: −7.
3. 2, 3; suma: 5.
4. −2, −3; suma: −5.

Vemos que los factores deseados son −1 y −6, por lo que la factorización es
(x− 1)(x− 7).

Factorice los siguientes trinomios, explicando su razonamiento.

1. x2 − x− 2.
2. x2 + 14x + 13.
3. x2 − 9x + 18.

Factorización de trinomios
Para factorizar 2x2 + 9x + 9, el producto del coeficiente principal y el coeficiente
constante es 2× 9 = 18. Ahora encontramos sus factores y su suma para hallar
una que dé 9.

1. 1, 18; suma: 19.
2. −1, −18; suma: −19.
3. 2, 9; suma: 11.
4. −2, −9; suma: −11.
5. 3, 6; suma: 9.
6. −3, −6; suma: −9.

Vemos que los factores buscados son 3 y 6, por lo que podemos escribir

2x2 + 9x + 9 = 2x2 + 3x + 6x + 9

y factorizamos el factor común de los primeros dos sumandos y luego el factor
común de los últimos dos sumandos

2x2 + 9x + 9 = 2x2 + 3x + 6x + 9 = x(2x + 3) + 3(2x + 3)

y, al aparecer un factor común en los dos sumandos que obtuvimos, resulta

2x2 + 9x + 9 = (x + 3)(2x + 3).

Factorice las siguientes expresiones. Explique su razonamiento.

1. 3x2 + 8x + 4.
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2. 6x2 + 5x− 4.
3. 20w2 − 47w + 24.

Factorización de trinomios cuadrados perfectos y diferen-
cias de cuadrados
Factorice los siguientes polinomios, observando cuadrados de qué terminos son
el primer término y el último, aplicando “en reversa’ ’ el binomio al cuadrado o
el producto de binomios conjugados.

1. m2 − 20m + 100.
2. 49n2 + 168n + 144.
3. 25y2 − 196.
4. 4m2 − 9.

Notas sobre simplificación, multiplicación y división de expresiones racionales.

Abramson, sección 1.6: Rational Expressions.

Simplificación de expresiones racionales
Simplifique las siguientes expresiones racionales.

1. m−12
m2−144 .

2. 3c2+25c−18
3c2−23c+14 .

3. 6x2+5x−4
3x2+19x+20 .

Multiplicación y división de expresiones racionales
Encuentre los siguientes productos y cocientes, expresando el resultado en sus
mínimos términos.

1. x2−x−6
2x2+x−6 ·

2x2+7x−15
x2−9 .

2. 2d2−9d−35
d2+10d+21 ·

3d2+2d−21
3d2+14d−49 .

3. 6b2+13b+6
d2+10d+21 ·

6b2+31b−30
18b2−3b−10 .

4. 16x2+18x−55
32x2−36x−11 ÷

2x2+17x+30
4x2+25x+6 .

5. 16a2−24a+9
4a2+17a−15 ÷

16a2−9
4a2+11a+6 .
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Suma y diferencia de expresiones racionales
Si sumamos

3
x + 5 + 1

x− 3
vemos que, como los denominadores no tienen factores en común, entonces el
mínimo común denominador es su producto, o sea (x + 5)(x− 3). Por lo tanto
basta multiplicar de forma cruzada para obtener

3(x− 3)
(x + 5)(x− 3) + (x + 5)1

(x + 5)(x− 3) = 3(x− 3) + x + 5
(x + 5)(x− 3)

= 3x− 9 + x + 5
(x + 5)(x− 3)

= 4x− 4
(x + 5)(x− 3)

= 4(x− 1)
(x + 5)(x− 3) .

Consideremos ahora una diferencia

6
x2 + 2x + 1 −

2
x2 − 1 .

En este caso, tenemos que el primer denominador es un trinomio cuadrado
perfecto, así que es (x + 1)2, mientras que el segundo es una diferencia de
cuadrados, o sea que se factoriza como un producto de binomios conjugados, o
sea (x+1)(x−1). En este caso, el mínimo común denominador es (x+1)2(x−1).
Así, nos queda

6(x− 1)
(x + 1)2(x− 1) −

2(x + 1)
(x + 1)2(x− 1) = 6x− 6

(x + 1)2(x− 1) −
2x + 2

(x + 1)2(x− 1)

= 4x− 8
(x + 1)2(x− 1)

= 4(x− 2)
(x + 1)2(x− 1) .

Calcule lo siguiente. Indique cuál es el mínimo común denominador de los
términos.

1. 2
x + 10

y

2. 12
2q −

6
3p .

3. y+3
y2−2y + y−3

y .
4. x−1

x+1 −
2x+3
2x+1 .
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Racionalización de denominadores en expresiones racionales
Cuando tenemos una expresión de la forma

1√
x + 2

a veces queremos “quitar’ ’ la raíz cuadrada del denominador, y para eso acudimos
a la racionalización, multiplicando tanto al numerador como el denominador por
el binomio conjugado, en este caso

√
x− 2. O sea

1√
x + 2

·
√

x− 2√
2− 2

=
√

x− 2
x− 4 .

También se puede racionalizar el numerador, como por ejemplo en la expresión
√

x−√y

x− y

que se ve en cálculo infinitesimal. Multiplicamos, pues, por el binomio conjugado
del numerador (es decir,

√
x +√y) tanto al numerador como el denominador.

Queda √
x−√y

x− y

√
x +√y
√

x +√y
= x− y

(x− y)(
√

x +√y)

y esto se puede simplificar a
1√

x +√y

siempre que x 6= y.

Racionalice apropiadamente, y simplifique si es posible.

1.
√

1+x−h−
√

1+x
h .

2.
√

t−7√
t+7 .
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