1. Use el método del wronskiano para obtener la solucion

Q:1(z) = %xln (1tf:) —1

de la ecuacion de Legendre a partir del polinomio de Legendre P, = .

2. Sabiendo que los armonicos esféricos para £ = 0,1 son
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demuestre que se satisface
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param =0y m = 1.

3. Exprese a la funcién

£(8,¢) = sen(0)[(sen(0/2))* cos(¢) + i(cos(6/2))* sen(¢)] + (sen(0/2))*

como una suma de armonicos esféricos. Sugerencia: use las férmulas de
angulo mitad.

4. Use a la funcién generadora de los polinomios de Legendre P,(x) para
demostrar que
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5. Los polinomios de Hermite H,(z) se pueden definir segin
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Demuestre que
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y use a ® para demostrar que H/ (x) = 2nH,_1(z).
. Escogiendo una forma adecuada de h en la funciéon generadora
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demuestre que son validas las siguientes representaciones integrales de
las funciones de Bessel del primer tipo para m entero:

Jom(2) = (_;)m /0 7rCos(z cos(0)) cos(2mh) db, m>1,
Jom+1(2) = %/{) ’ cos(z cos(f)) sin((2m + 1)0) db, m > 0.

. Establezca la serie de potencias para las funciones de Bessel esféricas
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donde 2n+ 1)!!'=1-2-3---(2n — 1)(2n + 1). Puede utilizar el hecho

de que
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donde I' es la funcion gamma de Euler.

L(n+3) = n €N,



