5. Sensores y Transductores

F. Hugo Ramírez Leyva

Cubículo 3

Instituto de Electrónica y Mecatrónica hugo@mixteco.utm.mx

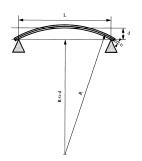
Junio 2013

1

Sistemas de acondicionamiento

- 5. Sensores y
 Transductores
 - Temperatura
 - Sensores de Luz
 - Desplazamiento, posición y proximidad
 - Velocidad y movimiento
 - Fuerza
 - Presión de fluidos
 - Flujo de líquidos
 - Nivel de líquidos

Tipos de Medidores de Temperatura


- Termómetro bimetálico. Usa la expansión térmica de 2 metales.
 Transformar las variaciones de temperatura en variaciones mecánicas.
- Resistivos. Cambio de la resistencia en función de la temperatura RTD (Resistive Temperature Detectors). Metales, Termistores.
- Termo acoplador. Efecto Seebeck effec, Transforma variaciones de temperatura en voltaje mediante la unión de 2 metales.
- Termómetros de unión de semiconductor. Unión PN de semiconductor.
- Infrarrojo. Medición de la intensidad de la radiación electromagnética en el rango del infrarrojo (radiación térmica)

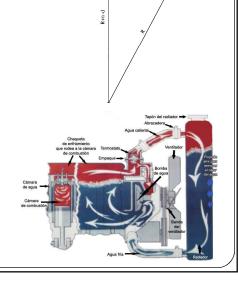
- Piro eléctricos. Materiales cristalinos que generan voltaje ante cambios del flujo de calor
- Termómetros líquidos. Mediante la expansión térmica de mercurio contenido en un envase de vidrio.
- Manométricos. Miden la presión del gas y a partir de ella obtiene la medición de la temperatura.
- Fibra óptica. Cambio de las propiedades de la luz en función de la temperatura.
 Fase (Interferometría 10⁻¹⁴m). Efecto Dopler, Cambio de polarización, estimulación de emisión secundaria (color o polarización).
- Indicadores de temperatura.
 Deformación de un cuerpo en función de la temperatura (conos pirométricos,

3

Termómetro bimetálico

- Se genera un cambio de longitud en 2 metales con diferente coeficiente de expansión térmica.
- Esta diferencia provoca que el dispositivo se mueva fuera del plano, el cual puede ser utilizado como actuador electromecánico.
- Para maximizar el efecto del doblado, se utilizan materiales con una gran diferencia en sus coeficientes de expansión térmica.
- El metal con el mayor coeficiente se llama *elemento activo*, y el de menor es el elemento pasivo (hierro níquel 0.1x10⁻⁶k⁻¹).
- Las configuraciones de los elementos bimetálicos son: Puente, trampolín, espiral o helicoidal.

4


http://www.calderasdelnorte.com.mx/detalle_producto.asp?id_Product=82

Termómetro Bimetálico

• La ecuación que controla la curvatura esta dada por:

$$\frac{1}{R} - \frac{1}{R_0} = \frac{6 \Big(1 + m\Big)^2 \Big(\alpha_2 - \alpha_1\Big) \Big(T - T_0\Big)}{t \left[3 \Big(1 + m\Big)^2 + \Big(1 + mn\Big) \Big(m^2 + 1/mn\Big)\right]}$$

- 1/R0= Curvatura inicial a la temperatura T0
- Coeficiente de expansión térmica (2 el activo y 1 pasivo).
- n=E1/E2 módulos de Young's
- m=t1/t2 espesores
- t = t1 + t2 espesor de las 2 tiras.
- La mayoría de medidores industriales m=1.

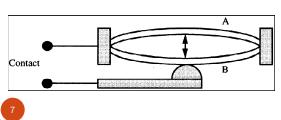
5

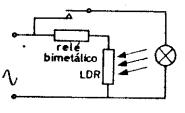
Termómetro Bimetálico

 TABLE 32.2
 Table of Selected Industrially Available ASTM Thermostatic Elements

Type (ASTM)	Flexivity 10 ⁻⁶ (°C ⁻¹⁾	Max. sensitivity temp. range (°C)	Max. operating temp. (°C)	Young's Modulus (GPa)
TM1	27.0 ± 5% ^a	-18-149	538	17.2
	$26.3 \pm 5\%$			
TM2	$38.7 \pm 5\%^{a}$	-18-204	260	13.8
	$38.0 \pm 5\%^{b}$			
TM5	$11.3 \pm 6\%^{a}$	149-454	538	17.6
	$11.5 \pm 6\%^{b}$			
TM10	$23.6 \pm 6\%^{a}$	-18-149	482	17.9
	22.9 ± 6%b			
TM15	$26.6 \pm 5.5\%^{a}$	-18-149	482	17.2
	25.9 ± 5.5%b			
TM20	$25.0 \pm 5\%^{a}$	-18-149	482	17.2
	25.0 ± 5% ^b			

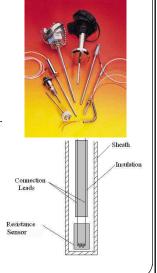
* 10–93°C. From ASTM Designation B 388 [15].
 * 38–149°C. From ASTM Designation B 388 [15].

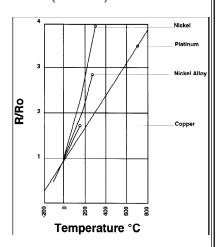

TABLE 32.3 Composition of Sel in Table 32.2										
	Element	TM1	TM2	TM5	TM10	TM15	TM2			
High-expansive material chemical	Nickel	22	10	25	22	22	18			
composition (% weight)	Chromium	3	72	8.5	3	3	11.5			


	Manganese	_	18		_		_
	Copper		_				
	Iron	75	_	66.5	75	75	70.5
	Aluminum	_	-	_			
	Carbon	_	_	_	-	-	1-0
Intermediate nickel layer		No	No	No	Yes	Yes	No
Low-expansive material chemical	Nickel	36	36	50	36	36	36
composition (% weight)	Iron	64	64	50	64	64	64
	Cobalt	-	_	_	-		2-0
Component ratio (% of thickness)	High	50	53	50	34	47	50
-	Intermediate	-	_	-	32	6	10-0
	Low	50	47	50	34	47	50

From ASTM Designation B 388 [15].

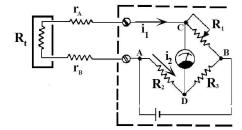
Termómetro Bimetálico

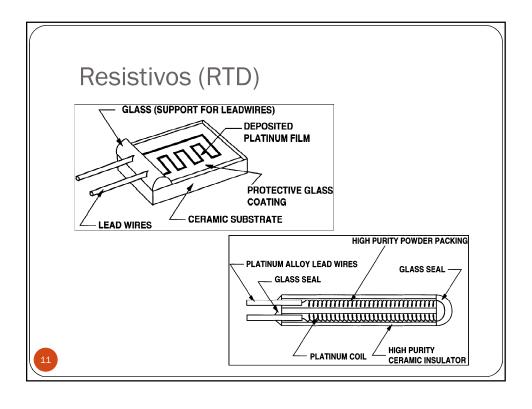

- Las principales aplicaciones son:
 - Control de temperatura en procesos industrial
 - Actuador de tipo on/off (encendido/apagado)
 - Encendido y apagado de contactos eléctricos (*snap*) en foto celdas.
- Micro sensores y micro actuadores


Termómetro Resistivos (RTD)

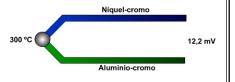
- Detectores resistivos de temperatura (Resisive Temperatura Detectors RTD).
- Son tipos especiales de metales que cambian su resistencia en función de la temperatura. Cuando ésta aumenta, la resistencia se incrementa.
- Se pueden conseguir precisiones estándares de ±0.1
 C y con platino hasta ±0.0001°C (SPRTs).
- Los metales mas usados son el platino, el cobre y el níquel. Entre más puros sean éstos, se tiene una mejor respuesta.
- El platino es el mejor, debido a que es químicamente inerte, no se oxida y tiene un rango grande de temperaturas de operación.
- Para medir la resistencia, se le aplica una corriente constante (0.8 mA a 1mA), y se mide el voltaje. Para ello se usa un multímetro o un puente de Wheatstone

Termómetro Resistivos (RTD)


- El platino se puede usar desde 184.44°C a 648.88°C.
- La sensitividad se define como el cambio de resistencia en el sensor por grado centígrado.
- El níquel se comporta muy no líneal a temperaturas mayores de 300°C, el cobre a 150°C se oxida.
- El coeficiente de temperatura , . Es el cambio promedio in la resistencia por °C por la resistencia.
- R0= Resistencia a 0°C.
- R100= Resistencia a 100°C.
- El coeficiente de temperatura para el níquel es de 0.00672, para el cobre 0.00427 y para el platino 0.003925.
- La resistencia nominal es de 100 Ω .

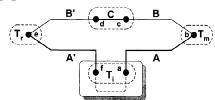


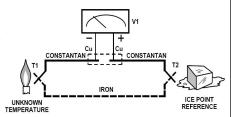
Termómetro Resistivos (RTD)


- Existen 3 tipos de RTD's de platino
 - Standard Platinum Resistance Thermometers (SPRTs).
 - Secondary Standard Platinum Resistance Thermometers (Secondary SPRTs).
 - Industrial Platinum Resistance Thermometers (IPRTs).
- Ecuación de comportamiento:
- t=temperatura
- R0= Resistencia a 0°C.
- A y B = Constantes de calibración.

- Es uno de los elementos más ampliamente usados para la medición de la temperatura, a pesar de la gran cantidad de tipos de sensores que existen en nuestros días.
- Un termo acoplador, es cualquier unión de 2 conductores eléctricos con características temo eléctricas diferentes.
- El efecto Seebeck genera un voltaje entre 2 conductores eléctricos diferentes cuando no se encuentran a una temperatura uniforme.
- Cualquier interfaz eléctrica entre estos 2 conductores es una unión termo eléctrica real.
- Las terminales libres en los termo elementos son llamadas terminales.

- Las terminales libres en los termo elementos son llamadas terminales
- La disponibilidad de equipo a bajo costo, ha creado la ilusión de que la medición es fácil y simple. Sin embargo esto no es cierto ya que la precisión y el error son mal entendidas y cuestan mucho dinero.
- En un termo acoplador ocurren 3 fenómenos: Seebeck, Peltier y Thomson. Pero solo el primero convierte la energía térmica a eléctrica. Los otros 2 efectos son despreciables para aplicaciones de termometría.

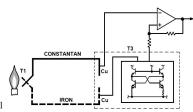

 La fuente de voltaje Seebeck EMF con una temperatura en su unión Tm a una temperatura física de referencia Tr es:

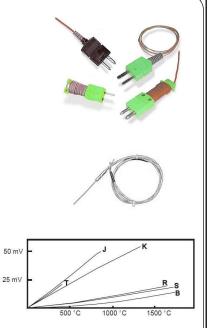

$$E_{AB}(T,T_r) = E_A(T_m,T_r) - E_B(T_m,T_r)$$

• El efecto Seebeck es

$$\sigma_{AB}(T,T_r) = \sigma_A(T_m,T_r) - \sigma_B(T_m,T_r)$$

- es el que se puede observar.
- El voltaje se mide en circuito abierto, por lo cual no tiene sentido conexiones en paralelo de varios termopares.
- Tm=Temperatura en la unión.
- Tr=Temperatura de referencia (normalmente 0 °C).
- Ti = Temperatura




Termo Acopladores

- Las 2 configuraciones más usuales para conectar los termopares son:
 - Unión con una sola referencia.
 - Es conveniente cuando se tiene una referencia de temperatura disponible.
 - Es necesario que Ti=Ta=Tf.
 - Normalmente tiene 4 termo elementos distintos.
 - No es recomendable usar esta configuración, con circuitos que internamente proporcionen compensación.
 - Unión con 2 referencias.
 - Es el más usado en la termometría moderna.
 - ${\color{blue} \bullet}$ Este circuito solo tiene un termo acoplador principal (A-B)
 - Internamente posee unas terminales de extensión (C-D) (extensión Leads). Su uso es Neutral (no genera Fuerza Electromotriz EMF), Acoplamiento (hace que Ts Ti) o Compensación (generan una EFM para compensar la diferencia entre (Ts yTi).
 - La unión de referencia (A'-B') son usadas para compensar.

- El estándar ANSI clasifica a los termopares en 8 tipos, y les asigna un color en especifico, estos son: B, E, J, K, N, R, S y T
- Tipo K (<u>Cromo</u> (<u>Ni-Cr</u>) Chromel / <u>Aluminio</u> (aleación de <u>Ni-Al</u>) Alumel): De bajo costo, rango de temperatura de -200 °C a +1.200 °C y sensibilidad 41μ V/°C aprox.
- Tipo E (Cromo / <u>Constantán</u> (aleación de <u>Cu-Ni</u>)): No son magnéticos y se usan en el ámbito criogénico. Sensibilidad de 68 μV/°C.
- Tipo J (<u>Hierro</u> / Constantán): Rango de temperatura de -40°C a +750°C y sensibilidad de \sim 52 μ V/°C.
- Tipo N (<u>Nicrosil</u> (<u>Ni-Cr-Si</u> / <u>Nisil</u> (<u>Ni-Si</u>)): es adecuado para mediciones de alta temperatura gracias a su elevada estabilidad y resistencia a la oxidación de altas temperaturas, y no necesita del <u>platino</u> utilizado en los tipos B, R y S que son más caros.

Termo Acopladores

- A bajas temperaturas es recomendable usar el J, K o T. El J es más barato y el K es más caro pero tiene una mejor linealidad.
- Para altas temperaturas, el más recomendado es el tipo R y S, el mejor es R por tener una mayor sensibilidad.
- Si operan en ambientes corrosivos o muy agresivos, se debe usar un termopozo.
- El termopar tipo B tiene una menor sensibilidad que el tipo E (10 veces), por lo cual se usa a altas temperaturas.
- El tipo es el que tiene la mayor sensibilidad 81uV/°C. Genera 76 mV a 0 °C.
- Existen termopares con grado comercial y Premium.

TABLE 32.12 Characteristics of U.S. Letter-Designated Thermocouples

Туре	Common name	Color code	M.P. (°C)	Recommended range, (°C)d	emf at 400°C, (mV)	Uncertainty, +/– Special tolerance Normal tolerance	ρ (μΩ-cm)
В		Browna	1810	870 to 1700	0.787	0.25%	34.4
BX	_	Graya	5 	_	-	0.50%	(E-1)
BP	Pt30Rh	Gray	1910	 ;	-	¥ —	18.6
BN	Pt6Rh	Red	1810	_	_	2	15.8
Е	_	Brown ^a	1270	-200 to 870	28.946	1.0°C or 0.40%	127
EX		Purplea	D	_		1.7°C or 0.50%	9-
EP	Chromel ^b	Purple	1430	_==	V <u></u> 37	<u>a</u>	80
EN	Constantan	Red	1270	-	8 8		46
J	_	Browna	1270	0 to 760	21.848	1.1°C or 0.40%	56
JX	_	Whitea	200	Haran Andrew Control of State Control	200000000000000000000000000000000000000	2.2°C or 0.75%	
JP	Iron	White	1536	_	-	-	10
JN	Constantan	Red	1270	_	-	-	46
K	_	Browna	1400	-200 to 1260	16.397	1.1°C or 0.40%	112
KX		Yellowa	-		-	2.2°C or 0.75%	
KP	Chromel	Yellow	1430	_	-	-	80
KN	Alumel ^b	Red	1400		86	<u></u>	31

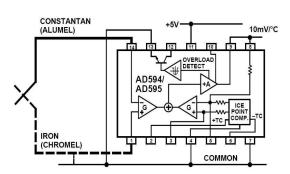
17

Termo Acopladores

R	-	Brown ^a	1769	0 to 1480	3.408	0.6°C or 0.10%	29
RX	1-1	Green ^a	2	<u> 100 - 100 </u>		1.5°C or 0.25%	19
RP	Pt13Rh	Green	1840	- T	3 3		19
RN	Pt	Red	1769	_		-	10
S	N	Browna	1769	0 to 1480	3.259	0.6°C or 0.10%	30
SX		Green ^a	3 .	-		1.5°C or 0.25%	
SP	Pt10Rh	Green	1830	_	()		20
SN	Pt	Red	1769	-		2	10
T		Brown ^a	1083	-200 to 370	20.810	0.5°C or 0.40%	48
TX	_	Blueª	_	_		1.0°C or 0.75%	_
TP	Copper	Blue	1083	-		1-1	2
TN	Constantan	Red	1270			J 	46

From References [1, 4, 9, 10]

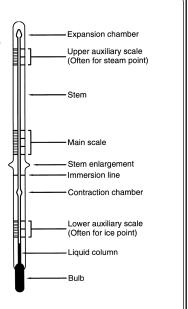
^a Overall jacket color.


^b Chromel and Alumel are trademarks of Hoskins Mfg. Co.

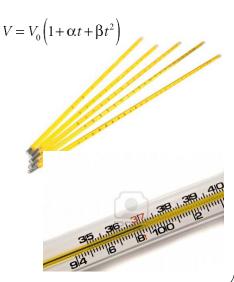
^c Initial tolerances are for material as manufactured and used within recommended temperature range, Table 32.15, protected in a benign environment.

^d Recommended temperature range is a guideline for service in compatible environments and for short durations.

• Comercialmente existen CI que acondicional el voltaje de salida de los termopares. El AD594 o AD595, acondiciona termopares tipo J y K respectivamente.

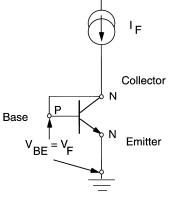

 En ambos casos el voltaje de salida es de 10mV/°C.

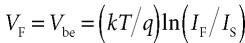
19


Termómetros líquidos

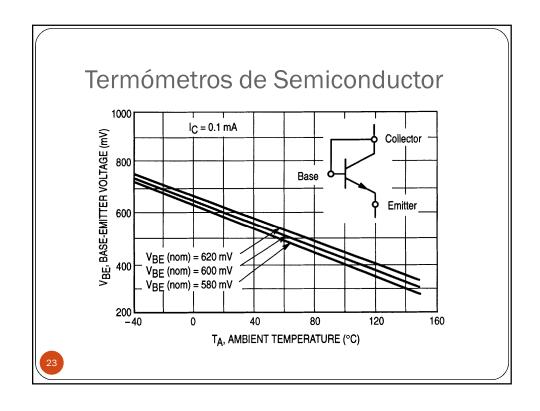
- Este tipo de termómetros se basa en un liquido contenido en un empaque de vidrio. Fueron los primeros que se usaron. Existen en el rango de -190°C a 600°C
- El mercurio es uno de los líquidos mas usados, ya que proporcionan un precisión de 0.1°C. Las partes que lo conforman son:
 - El bulbo que es el contenedor de vidrio el cual mantiene en su interior el líquido. Su espesor es esencial para realizar una correcta medición
 - El tallo es el cuerpo de vidrio mantenido al vacio que permite la expansión del líquido por capilaridad
 - El líquido normalmente mercurio
 - Las marcas que dan la escala de temperatura

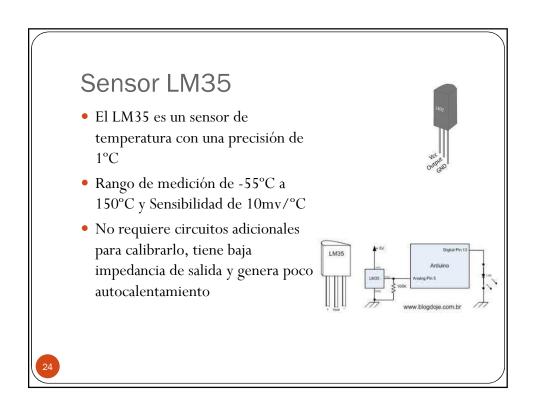
Termómetros líquidos


- La ecuación que describe la expansión del mercurio esta dada por:
- donde Vo= Volumen del mercurio a 0 °C
- α y β = Coeficiente de expansión térmica del mercurio (α=1.8e-4 /°C y β=5e-8/°C2).
- Problemas de medición
 - Constante de temperatura
 - Capacidad térmica
 - Errores de inmersión

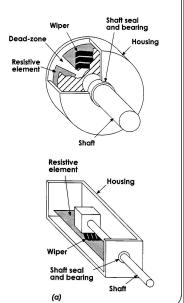


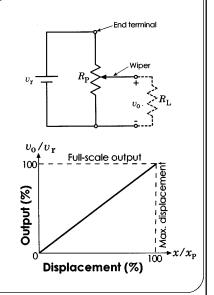
21


Termómetros de Semiconductor


- Los termómetros semiconductores usan las características de las uniones PN y su dependencia de la temperatura
- Rango de operación de -55°C a +150°C
- La mayoría de los sensores de semiconductores usan la unión de un transistor bipolar
- La sensibilidad es mayor al RTD y es mas lineal que el termoacoplador o el RTD
- Es fácilmente puesto en circuito integrado con otras funciones MSP430

Desplazamiento, posición y proximidad


- Tipos
 - Resistivos
 - Inductivos
 - Capacitivos
 - Piezoeléctricos
 - Interferometría con laser
 - Bore Gaging
 - Ultrasónicos
 - Ópticos
 - Magnéticos
 - Resolver
 - Fibra óptica
 - Rayo óptico


Sensores de Desplazamiento Resistivos

- Los sensores de movimiento resistivos normalmente son potenciómetros.
- Normalmente es alambrado en configuración de divisor de voltaje
- Se requiere que sean potenciómetros de precisión

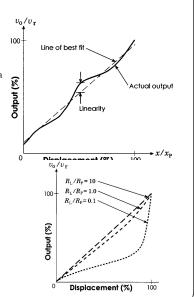
Sensores Resistivos

- Ventajas
 - Uso fácil
 - Bajo costo
 - No es electrónico
 - Amplitud de salida grande
 - Tecnología probada
- Desventajas
 - Ancho de banda limitado
 - Fricción
 - Carga inercial
 - Desgaste

Sensores Resistivos

- Tipos de potenciómetros de precición:
 - Rotatorios
 - De 3, 5 o 10 vueltas
 - Lineales
 - Desde 5mm a 4m
 - De Cuerda (String)
 - Hasta 50m
- Tipos de pot
 - Wirewound
 - El incremento discreto de resistencia
 - Nonwirewound
 - Incremento lineal de la resistencia

- Elemento resistivo
 - Plastico conductivo
 - Hibrido
 - Cement (Cerámico)

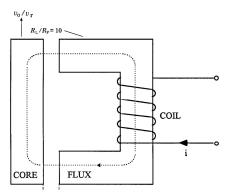

Carbon



http://www.betatronix.com/

Sensores Resistivos

- Características
- Viaje eléctrico
 - Es la más pequeño rango de movimiento sobre el cual la salida eléctrica es valida
- Linealidad en el rango de 0.1% a 1%
- Razón de potencia
- Coeficiente de temperatura
- Resistencia
- Excitación (AC o DC)
- Características mecánicas
 - Carga mecánica
 - Viaje mecánico
 - Temperatura de operación
 - · Vibración y aceleración
 - Velocidad
 - Vida
 - Des alineamiento



Desplazamieto (Encoder)

Sensor de Desplazamiento Inductivo

- Son robustos y compactos y es menos afectado por cambios ambientales
- Se base en el principio de un circuito
- Se clasifica en Auto generador y Pasivo
- $\begin{array}{ll} \bullet & \mathit{l=the} \\ \bullet & \mathit{m=tl} \end{array} \mathfrak{R} = \mathit{l} \big/ \mu \mu_0 \; \mathit{A} \quad \ \ \, \operatorname*{\mathit{path}} \\ \bullet & \mathit{ity of} \end{array}$
- magnetic circuit material
- m0 = the permeability of free space (= 4p ' 10-7 H/m)
- A = the cross-sectional area of the flux path

Velocidad y movimiento

Fuerza

Presión de fluidos

Flujo de líquidos

Nivel de líquidos

Sensores de Luz