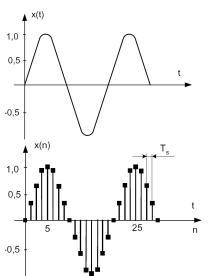
3. Sistemas de Adquisición de Datos

F. Hugo Ramírez Leyva

Cubículo 3 Instituto de Electrónica y Mecatrónica hugo@mixteco.utm.mx

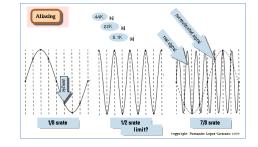
Marzo 2012

1


Sistemas de adquisición de datos

- El mundo técnico esta siendo cada vez mas digital debido a que las señales son mas convenientes para su procesamiento
- Las señales de los sensores se acondicionan analógicamente se digitalizan se procesan y convierten nuevamente a analógicas.
- El proceso de digitalización es realizado por los convertidores Analógicos Digitales (ADC) y el Digital Analógico (DAC)

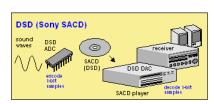
Conversión ADC y DAC


- Las señales analógicas son continuas en tiempo, el valor de estas señales esta determinada cada instante de tiempo. x(t)
- La conversión analógica digital convierte l señal x(t) en una señal discreta de la misma x(n)
- La señal digital es discreta en tiempo, lo que significa que el valor de la señal solo cambia en ciertos instantes de tiempo
- El tiempo en el cual ocurren los cambios se le llama Periodo de Muestreo (Ts)

3

Conversión ADC y DAC

- Para garantizar una correcta digitalización y reconstrucción, es necesario cumplir con el teorema del muestreo.
- La frecuencia de muestreo debe ser del doble de la máxima frecuencia a digitalizar.
- Si no se cumple se genera el fenómeno de Aliasing, o submuestreo.
- Una forma de prevenir este efecto, es el poner en la entrada un filtro pasa bajas

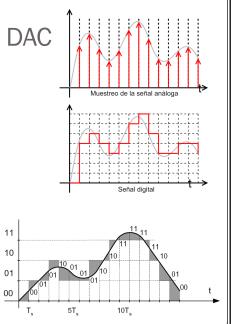

 $\begin{array}{c} \text{analogue} \\ \text{anti-alias} \\ \text{filter} \end{array} \xrightarrow{\text{ADC}} \begin{array}{c} \text{digital} \\ \text{anti-alias} \\ \text{filter} \end{array} \xrightarrow{\text{decimal}} \begin{array}{c} \text{decimal} \\ \text{filter} \end{array}$

Conversión ADC y DAC

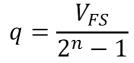
 Si se tiene una señal de f=50Hz, y se quieren 64 muestras por período, la fs=3200Hz, Ts=312.5us. Si se quieren 128 muestras fs=6400Hz y Ts=156.2us

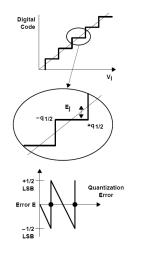
• Se tiene una mejor respuesta si se utiliza una frecuencia de muestreo superior a la mínima (Sobre muestreo).

- El sistema SACD de Sony (Super Audio Compact Disc) usa una frecuencia de muestreo de 2.82Mhz, tiene un factor de sobre muestreo k=64
- El sistema de audio del DVD, introducido por Technics, usa una frecuencia de muestreo de 192kHz, con un factor de sobre muestro k=4


From Computer Desktop Encyclopedia © 2005 The Computer Language Co. Inc.

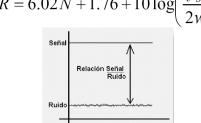
5

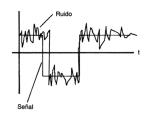

Conversión ADC y DAC


- La conversión Analógica Digital además de cuantizar en tiempo y amplitud.
- Esto se debe a que se tiene una cantidad limitada de bits para representar a la señal digitalizada
- En la figura se observa la forma en que se digitaliza una señal con un convertidor de 2 bits
- Se tiene un error de cuantización del 12%

Resolución

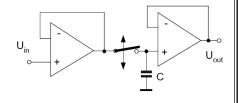
- La resolución q se define como la relación del cambio de voltaje en la salida que se produce como consecuencia de un cambio de 1 LSB en la entrada analógica (LSB-Least Significat Bit)
 - N= Número de bits
 - VFS = Voltaje a escala completa
- El error de cuantización esta en el rango de 0 a q
- Para reducir el error de cuantización hay que aumentar el número de bits

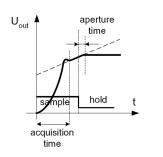




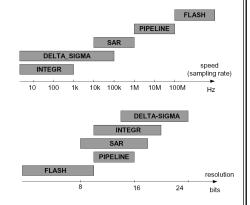
of bits	Number of the quantization	Value of a quantum	resolution %FS	rms noises $q/\sqrt{12}$	dynamics dB
N	levels 2 ^N	q		1	
8	256	8 mV	0.39	2.3 mV	48
10	1024	2 mV	0.098	580 μV	60
12	4096	0.5 mV	0.024	144 μV	72
16	65 536	31 μV	0.0015	8.9 μV	96
24	16 777 216	120 nV	0.000006	34. nV	144
eπor q	MM	range	digital word 1110 101 100 011 000 q 2	q q 3q 3q 4q 5q	range 6q 7q 8q=FS

Relación señal a Ruido


- La relación señal a ruido $SNR = 6.02N + 1.76 + 10\log$ de un convertidor es función de la frecuencia de muestreo fs, el ancho de banda w y el número de bits **N**.
- El ruido se disminuye si se tiene un sobre muestro o se aumente al número de bits

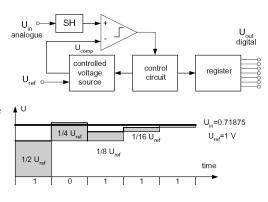


Circuito Muestreador Retenedor


- A pesar de que los ADC son rápidos, requieren cierto tiempo el realizar la conversión.
- El circuito que congela la señal durante este tiempo se llama circuito muestreador retenedor (Sample and Hold)
- El circuito S-H de la figura cuando se cierra el interruptor carga al capacitor, y éste mantiene el voltaje durante el tiempo de conversión
- En el mercado hay convertidores con SH integrados o tiempos de conversión de 10ns a 1ps.

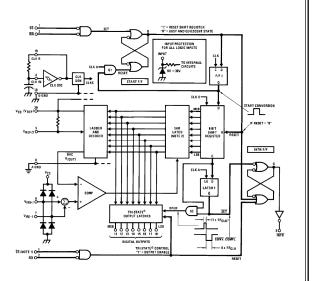
Convertidores Analógicos Digitales

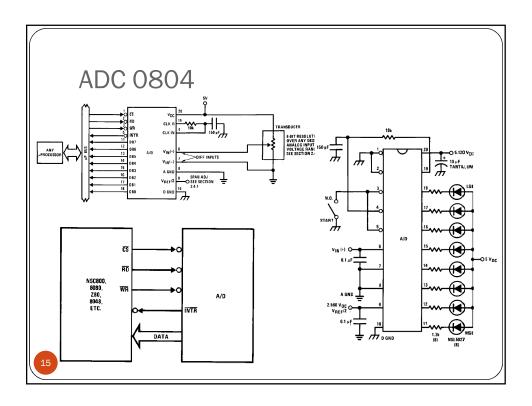
- En el mercado existen varios tipos de convertidores analógicos digitales.
- Estos son:
 - Aproximaciones sucesivas (successive approximations register SAR)
 - Pipeline
 - Sigma delta (delta-sigma)
 - Flash
 - Integrados


Convertidores Analógicos Digitales

- La diferencia entre ellos es la frecuencia de muestreo (velocidad) y el número de bits (resolución)
- Los convertidores de alta velocidad tienen baja resolución y viceversa
- El más común es el de aproximaciones sucesivas
 - son precisos
 - Tienen alta precisión (16 bits)
 - Amplio rango de velocidad hasta 100 MSPS (Mega muestras por segundo)
- Para altas velocidades, hasta 100MPS, el convertidor Pipeline es recomendable.
- Para la conversión de señales rápidas los convertidores Flash son preferidos
- Los convertidores Sigma-Delta se usan cuando se quiere precisión y resolución (16 y 24 bits)
- Los convertidores integrales se usan para medir CD ya que tiene tiempos de conversión entre 10 -150ms

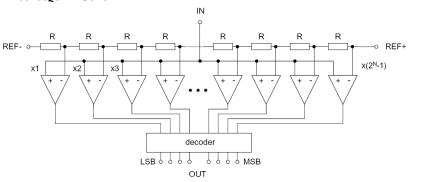
Convertidor de Aproximaciones Sucesivas

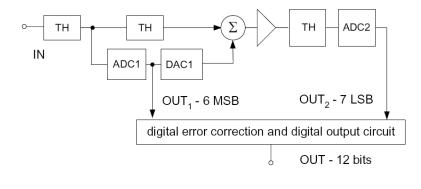

- Su resolución máxima es de 24bits
- Velocidad de 0.5 a 5MIPS
- Tiempo de conversión de hasta 1uS (Aceptable para la mayoría de aplicaciones).
- El principio de operación del SAR es el siguiente.
 - Se tienen secuencias de voltaje de U/2, U/4 ... U/2n
 - Estos voltajes se comparan con el voltaje de entrada Uin
 - Si el voltaje es menor se incrementa el registro
 - Si se excede el voltaje se envía un cero y se termina la cuenta



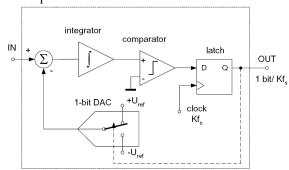
13

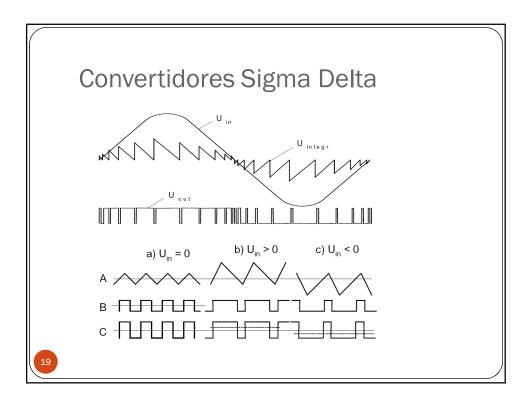
ADC 0804


- Resolución de 8bits
- Error total de 1LSB
- Tiempo de conversión de 100 **u**s
- Voltaje de entrada de 0 a 5V con una sola fuente


Convertidores Flash

- Los convertidores flash en lugar de usar un comparador, tienen 2n voltajes y comparadores
- Un circuito decodificador determina el voltaje de salida en función de las combinaciones de los comparadores
- La conversión se realiza en un solo paso. Por lo cual es posible conseguir 1GSPS


Convertidores Pipeline


- Este convertidor procesa la señal en varios etapas
- El circuito de la figura es de 2 etapas (ADC1 y ADC2)
- Es posible conseguir resoluciones de 14 a 18 bits y muestreos de 100 MSPS

Convertidores Sigma Delta

- Estos convertidores son de 1 bit. Utiliza la técnica de sobre muestreo
- el ancho del pulso es proporcional al valor de la señal convertida
- Cada kfs se realiza la comparación
- El sumador compara la entrada con la salida de la señal

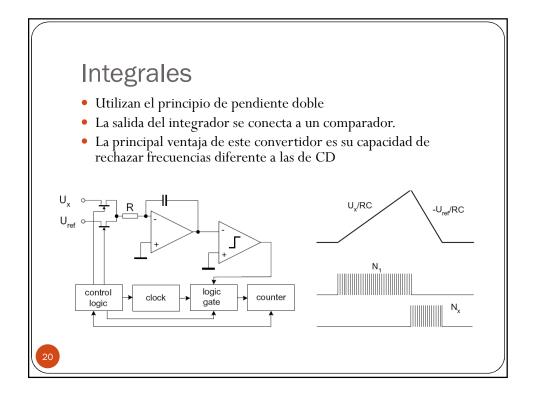
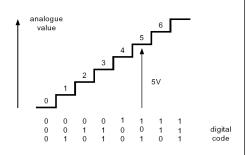


Table 5.4. The comparison of the market available analogue-to-digital converters

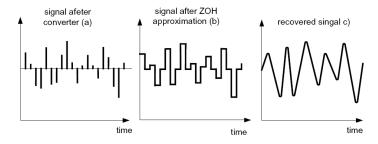
Part	Type	Sample	Bits	Manufacturer	Approx
		rate			Price \$
ADC180	integration	2048 ms	26	Thaler	210
ADS1256	delta-sigma	300 kSPS	24	Texas	9
AD7714	delta-sigma	1 kSPS	24	AD	9
AD1556	delta-sigma	16 kSPS	24	AD	27
MAX132	integration	63 ms	18	Maxim	8
AD7678	SAR	100 kSPS	18	AD	27
AD7674	SAR	800 kSPS	18	AD	30
AD10676	pipeline	80 MSPS	16	AD	900
ADS8412	SAR	2MSPS	16	AD	23
MAX1200	pipeline	1 MSPS	15	Maxim	20
ADS5500	pipeline	125 MSPS	14	AD	95
AD9410	pipeline	210MSPS	10	AD	200
AD9480	pipeline	250MSPS	8	AD	200
HI1276	flash	500 MSPS	8	Intersil	300
MAX105	flash	800 MSPS	6	Maxim	36
MAX108	flash	1.5 GSPS	8	Maxim	9

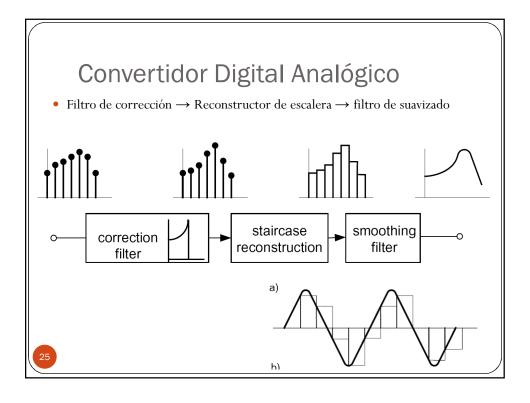

21

Características

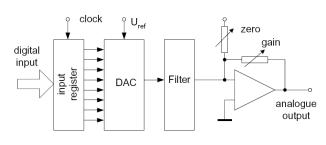
- SNR (*Signal to Noise Ration*). Se define como el margen que hay entre la potencia de la señal que se transmite y la potencia del ruido que la corrompe.
- SINAD (*Sgnal to noise and distortion ratio*). Es la razón del valor RMS de una onda seno vs el valor RMS del ruido y de todos los armónicos
- THD (*Total Harmonic Distortion*). Es la razon de RMS de todos los armónicos entre el valor fundamental
- IMD (*Intermodulation distortion*). Se define como el valor rms de los componentes de la intermodulación a la señal sin distorsión
- Respuesta al Transitorio. Es la respuesta del convertidor ante una entrada escalon
- FPBW (full Power Bandwith) es la frecuencia a la cual la amplitud de la señal digitalizada decrese 3dB
- ENOB (Efective number of bits). Un convertidor ideal solo tiene error de cuantización, pero los reales con el incremento de la frecuencia incrementa el ruido y la distorsión

$$ENOB = \frac{SINAD - 1.76}{6.02}$$

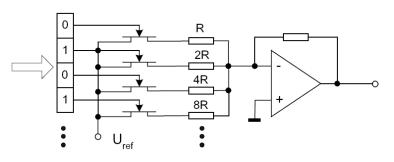

- Los DAC son usados para recuperar las señales analógicas a partir del código digital
- Este proceso a veces se le llama reconstrucción de la señal analógica
- Cada valor digital esta relacionado al valor definido en la señal analógica como se ve en la figura



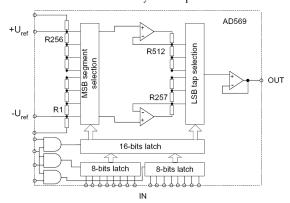
23

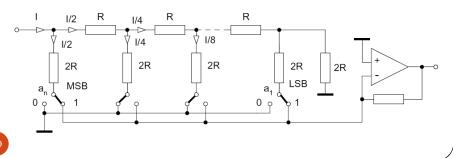

Convertidor Digital Analógico

- Después de la conversión digital se obtienen un serie de pulsos con amplitud proporcional a la señal al momento de muestreo
- El puso se mantiene constante hasta el siguiente pulso (Retenedor de orden Cero ZOH)
- A la salida del convertidor se le pone un filtro pasa bajas para mejor su respuesta



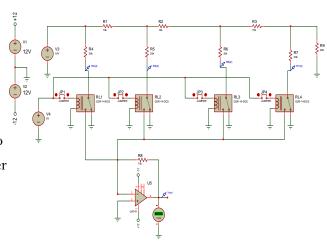
- En la figura se muestra la estructura de un convertidor DAC típico
- En la entrada hay un circuito candado (*latch*) que funciona parecido al *sample and hold*
- Una señal analógica se genera a partir de la suma de los componentes de acuerdo al nivel de cuantización


- El convertidor DAC más simple es como el que se muestra en la figura
- No es práctica su realización ya que se requieren muchos resistores de precisión de diferentes valores
- Tecnológicamente es mas conveniente usar el mismo valor de resistencia

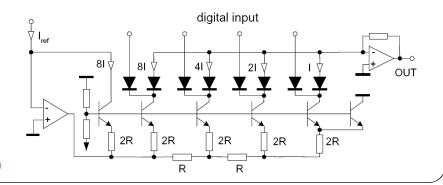

27

Convertidor Digital Analógico

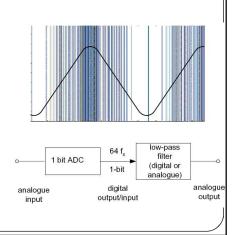
- En la figura se muestra un diagrama a bloques del convertidor AD569 de Analog Device
- Usa dos bancos de 256 resistores (una para los 8 bits bajos y el otro para los altos)
- Su alinealidades es menor al 0.01% y el tiempo de establecimiento de 3uS



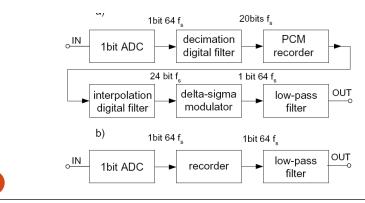
- Usa resistencias de valor R y 2R, así como interruptores controlados por los bits.
- en cada nodo la corriente se divide en dos partes iguales
- El voltaje de salida es proporcional a la corriente total sumada en la entrada del opam
- La red total siempre consume la misma corriente
- El convertidor DAC09 puede funcionar a 12 MSPS y un tiempo de establecimiento de 85ns

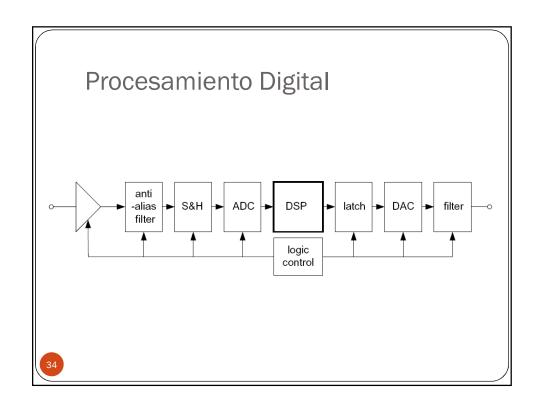

DAC Discreto R-2R en Proteus

- G2R-14-DC5
 - Relevador
- BUTTON interruptor
- DAC0808
 Convertido
 Digital analógico
- ADC0808Conver tido Analógico Digital



- La ventaja de que tiene la red R-2R es que usan el mismo valor de resistor
- Una alternativa es usar un configuración usando fuentes de corriente como en la figura


Convertidor Digital Analógico por PWM


- La modulación por ancho de pulso (PWM Pulse Width Modulation) es muy conveniente ya que solo usa una sola terminal digital para generarlo
- También se usa un filtro pasa bajas para recuperar la señal
- Para mejorar su rendimiento se usa un modulador sigma-delta

Direct Stream Digital y Grabado Convencional de Audio

- El reproductor de CD convencional usa una técnica de PCM (*Pulse Code Modulation*) con una frecuencia de muestreo de 44.1kHz y de 16 a 24 bits de resolución
- Usa un filtro de decimación par recuperar la señal a partir de una cadena de 1 bit

Características del ADC

- La resolución es el cambio de voltaje de salida que se produce como consecuencia de un cambio de 1LSB en las entradas digitales
- La no linealidad integral, es la diferencia entre la función de transferencia real y la linea recta idealizada
- La no linealdad diferencial, es la diferencia entre el paso ideal de 1LSB y el real
- Gliches, son pulsos momentáneos que se presentan en las transiciones

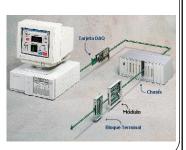
Ejemplo

- Un DAC de 8 bits tiene un rango de valores de 0 a 2.5v, de 0 a 5V y de -10 a +10V. Encontrar la resolución
- Un DAC de 8 bits tiene un resolución de 10mV/LSB.
 Calcule Vofs y Vo, cuando el código de entrada es 0x80H

Problemas

37

Tarjetas de Adquisición de Datos (TAD)


- La adquisición de datos (DAQ) es el proceso de medir con una PC un fenómeno eléctrico o físico como voltaje, corriente, temperatura, presión o sonido.
- Un sistema DAQ consiste de sensores, hardware de medidas DAQ y una PC con software programable.
- Comparados con los sistemas de medidas tradicionales, los sistemas DAQ basados en PC aprovechan la potencia del procesamiento, la productividad, la visualización y las habilidades de conectividad de las PCs estándares en la industria proporcionando una solución de medidas más potente, flexible y rentable.

DAC

- El hardware DAQ actúa como la interfaz entre una PC y señales del mundo exterior. Funciona principalmente como un dispositivo que digitaliza señales analógicas entrantes para que una PC pueda interpretarlas.
- Los tres componentes clave de un dispositivo DAQ usado para medir una señal son el circuito de acondicionamiento de señales, convertidor analógico-digital (ADC) y un bus de PC.
- Varios dispositivos DAQ incluyen otras funciones para automatizar sistemas de medidas y procesos.
 Por ejemplo, los convertidores digitalesanalógicos (DACs), las líneas de E/S y los contadores/temporizadores

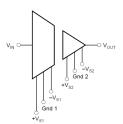
Componentes de un Dispositivo DAQ

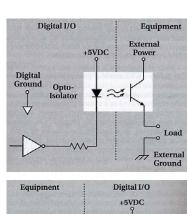
- Convertidor Analógico Digital (ADC)
 - Un ADC realiza "muestras" periódicas de la señal a una razón predefinida. Estas muestras son transferidas a una PC a través de un bus, donde la señal original es reconstruida desde las muestras en software.

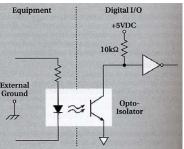
• Bus de la PC

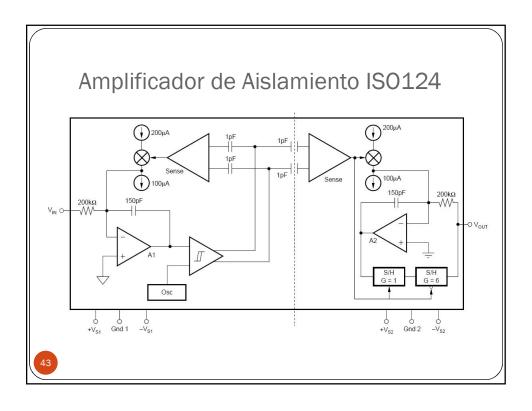
 Los dispositivos DAQ se conectan a una PC a través de una ranura o puerto. El bus de la PC sirve como la interfaz de comunicación entre el dispositivo DAQ y la PC para pasar instrucciones y datos medidos. Los buses de PC más comunes son USB, PCI, PCI Express y Ethernet. Recientemente esta disponible el 802.11 Wi-Fi para comunicación inalámbrica.

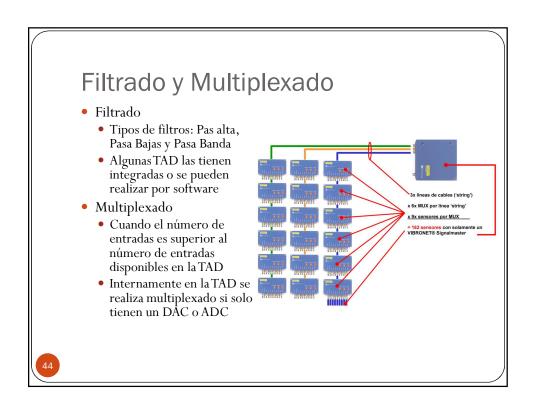
Acondicionamiento


- El acondicionamiento se puede realizar dentro o fuera Los tipos son:
- Amplificación de la TAD.
 - Aumenta el nivel de la señal analógica
- Filtrado
 - Elimina señales eléctricas indeseadas
- Aislamiento
 - Evita que la señal eléctrica a medir pueda dañar al operador o al equipo.
 - Protege a la señal a medir de influencias no deseadas
- Multiplexación
 - Permite la selección de diferentes señales a ser procesadas por la TAD


41


http://www.sc.ehu.es/acwamurc/Transparencias/%284%29TAD.pdf


Aislamiento


- Tipos de aislamiento
 - Óptico (opto acopladores)
 - Galvánico (Transformadores)
 - Capacitivo (capacitores)
 - De modo común (Operacionales)

Tarjetas tipo Plug_in

- Las tarjetas de adquisición de datos pueden ser Internas o Externas
- Se diseñan para ser insertadas en los slots internos de una PC
- Pueden Limitar los recursos internos de la PC
- Normalmente se diseñan para bus PCI pero también existen para ISA,
- Micro Chanel, Buses Appel, USB, etc

Características de Tarjetas tipo Plug_in

- Son de alta velocidad (de 100KHz a 1GHz)
- Se dispone de una gran variedad de funciones ADC, DAC y ES digitales, contadores, temporizadores y funciones específicas.
- Idóneos para aplicaciones con un pequeño número de canales
- El ruido interno de la PC puede limitar la precisión de las mediciones
- ullet el rango de voltajes de entrada y salida es de $\pm 10 \mathrm{V}$
- Realizar las conexiones de E/S o cambiarlas puede resultar engorroso
- Es el método menos caro para aplicaciones de medición y control

Criterios de Selección de una TAD

- Tipos de sistemas operativos, computadora. Windows, Mac Linux
- Tipo de conector para tarjeta PCI, PCMCI, NuBUS
- Número de canales de entrada analógicas y Digitales
- Resolución requerida
- Frecuencia de muestreo de las señales
- Sincronización y temporizadores

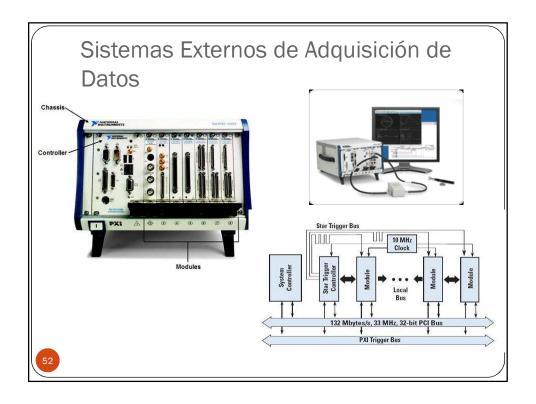
Sistemas Externos de Adquisición de Datos

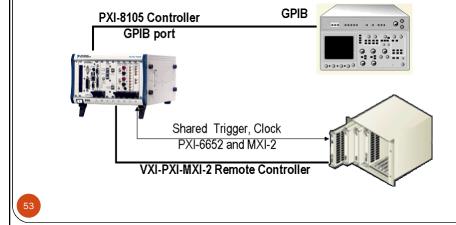
- Originalmente era un equipo autónomo conectado a una PC. Algunas ventajas:
 - Mayor número de canales
 - Entorno eléctrico mas protegido
 - Mayor velocidad y funcionalidad

Sistemas Externos de Adquisición de Datos

- Actualmente son equipos autónomos principalmente en aplicaciones industriales para los que los soluciones basada en PC no son validas
 - Alta sensibilidad para bajos niveles de voltaje de entrada (<1mV)
 - Se usan una variedad de sensores y canales de entrada
 - Se requiere procesamiento en tiempo real rápido
- Necesitan de una computadora para el control y almacenamiento.
 Normalmente se montan en racks

Sistemas Externos de Adquisición de Datos


- Arquitecturas
 - PXI: PCI eXtension for Instrumentation
 - PCI: Peripherical Component Interface
 - VISA: Virtual Instrumentation Software Architecture
 - VXI: VME eXtension four Instrumentation


Sistemas Externos de Adquisición de Datos

- Amplia variedad de tipos de slots para aplicaciones especializadas en adquisición y control
- El chasis ofrece un entorno eléctrico mucho más protegido y menos ruidoso que el de una PC
- Usa interfaces estándar IEE-588, RS-232, USB,..., permiten la conexión en red, adquisición a distancia, o el uso de ordenadores que no sean PC's
- Memoria y procesadores dedicados que permiten aplicaciones de control en tiempo real
- Arquitecturas robustas, fáciles de configurar con un gran variedad de funciones de medida y control
- Los accesorios requeridos y los componentes son costosos

Sistemas Híbridos de Adquisición de Datos

• Utilizan una combinación de tarjetas de adquisición de datos e instrumentación especifica de prueba (Test)

Tarjeta de Adquisición USB 120FS

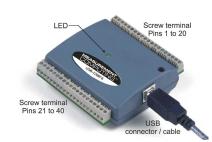
• Esta tarjeta es fabricad por Measurement COMPUTING

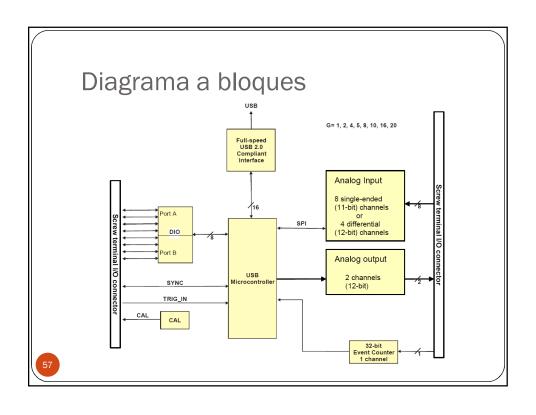
http://www.mccdaq.com/products/product-selection.aspx

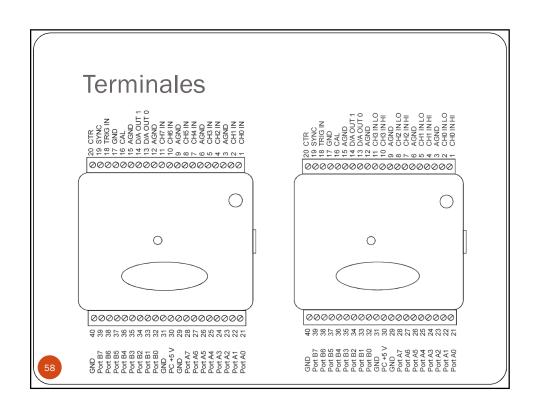
- Suministra tarjetas para diferentes interfaces: PCI, USB e independientes
- Proporciona los controladores necesarios para poder usar sus procutos con diferentes lenguajes de programación: C++, Matlab y LabVIEW
- Costo de 200dls

USB 1208FS

- Tiene entradas y salidas analógicas, entradas y salidas digitales y un contador de alta velocidad
- Rago de temperatura de 0°C a 70°C
- Humedad relativa de 0% al 90%
- USB-1208S USB 2.0 en modo de velocidad completa (12Mbps)
- Dimensiones 127 x 88.9 x 35.56 mm
- Impedancia de entrada de 122kohms
- Corriente máxima de entrada de <u>+</u>94uA.
- El bloque de conexiones lo tiene integrado

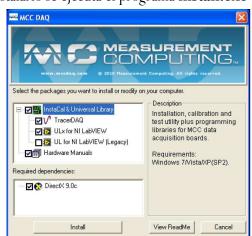


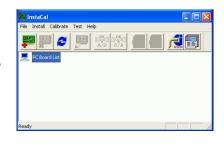

Características de Entrada Salida


- 16 pines de entrada salida digital (TTL) en 2 puertos
- 1 contador de alta velocidad de 32bits
- 8 entradas analógicas (referenciadas) o 4 diferenciales
- Frecuencia de muestreo de 50kS/s
- Convertidor analógico digital de 12 bits
 - Rango de entrada de ±10V
 - Resolución de
- Convertidor Digital analógico de 11 bits
 - Rango de salida de 0 a 4.096V
 - Resolución de

Respetabilidad de 1LSB

Instalación

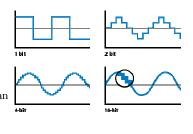

- La tarjetea de adquisición viene con el software Measurement Computing Data Acquisition Software, el cual proporciona todos los componentes para que se pueda usar. Los programas que instala son:
- InstaCal&Universal Library
 - Programa desde el cual se configura y reconoces a la TAD
- TraceDAC
 - Aplicación virtual para adquirir datos y generar señales con la TAD
- ULx for NI LabVIEW
 - Instrumentos virtuales para este lenguaje con el cual se pueden desarrollar aplicaciones
- Guías de usuario
 - Manuales de usuario del hardware que se tiene


Instalación

- Sistemas operativos Windows 7, Windows VISA y Windows XP SP 2.
- Para instalarlo se ejecuta el programa install.exe

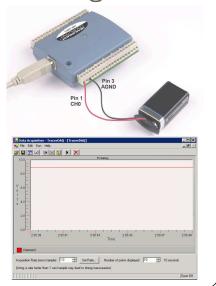
Instalación

- Una vez que ha quedado isntalado el software, cuando se conecta la USB1208FS esta es reconocido por el sistema y se puede ver en el programa InstaCal
- Cundo es reconocida se configura la entradas analógicas como diferenciales o referenciadas

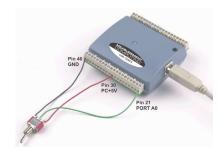


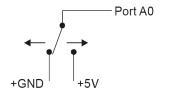
61

Modos de Trabajo


- Para la adquisición de señales analógicas se puede trabajar en dos modos:
- En modo software
 - Se obtiene una sola muestra al mismo tiempo.
 - El tiempo de adquisición depende de la computadora usada
- En modo continuo
 - Las entradas analógicas son continuamente adquiridas y se almacenan en un buffer FIFO hasta que se termina el scan
 - La frecuencia máxima de escaneo no puede exceder 50kS/s entre el número de canales a usar
 - Éste puede ser activado por software o disparado por una fuente externa

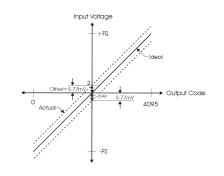
Prueba de Entradas analógicas


- Para probar la entrada analógica se conecta una batería o fuente de voltaje en la terminal 1 (CH0 IN) y la 3 (GND)
- Se abre el InstaCal y se tiene una grafica del voltaje.
- También se puede abrir el ejemplo que trae la tarjeta para LabVIEW (XAIN.VI)



Pruebas de Entradas Digitales

- Para probar la entrada digital se conecta una interruptor de 1 polo 2 tiros en la terminal 21 (PORT A0), la 30 (+5V) y la 40 (GND).
- Se abre el InstaCal y se activa una señal cundo esta en alo o se apaga cuando esta en bajo.
- También se puede abrir el ejemplo que trae la tarjeta para LabVIEW (XDIN.VI)
- Es importante comentar que si no tiene ningún voltaje conectado lo reconoce como alto (1 lógico)



Precisión de la tarjeta

- Offset
 - En el rango de <u>+</u>10V es de <u>+</u>9.77mv
 - En general es del 0.2%
- Ganancia
- No linealidad

