Práctica No. 1 del Curso "Sensores y Transductores". "Caracterización del puente de Wheatstone"

Objetivos

- Verificar la teoría de operación en 2 puentes de Wheatstone.
- Medir el voltaje que se tiene a la salida del puente cuando una de las resistencias de sus ramas se mueve del punto de equilibrio.
- ♦ Compara las mediciones contra lo que da la simulación y el modelo teórico.

Material y equipo requerido

- Fuente de voltaje.
- Multímetro marca Tektronix.
- 5 resistencias de 100Ω y 5 resistencias de $1k\Omega$.
- Potenciómetro de 100Ω y $1k\Omega$.

Introducción

El puente de Wheatstone es el más usado para el acondicionamiento de sensores de tipo resistivo, ya que convierte las variaciones de resistencia en variaciones de voltaje. Consta de 4 ramas (resistencias) una de las cuales corresponde al resistor del sensor. En la figura 1 se muestra el diagrama esquemático de éste circuito.

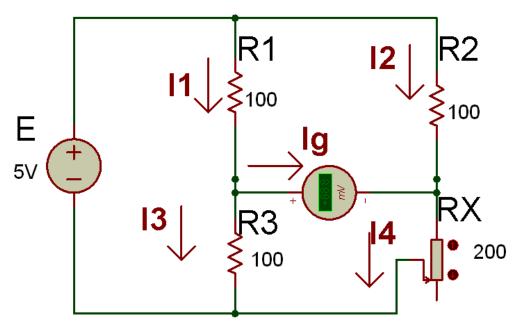


Figura 1. Puente de Wheatstone

Normalmente las resistencias R1=R2=R3=R y la resistencia desconocida o del sensor es Rx. Con estas condiciones el voltaje a la salida del puente esta dado por la ecuación 1, donde *Vs* es el voltaje de la fuente de alimentación del puente (E para la figura 1).

$$V_{TH} = V_{\rm s} \left[\frac{1}{2} - \frac{R_{\rm x}}{R + R_{\rm x}} \right] \tag{1}$$

Para obtener una aproximación de la ecuación 1, cuando las variaciones de Rx están alrededor del valor nominal del puente, se hace suponiendo que Rx=R+r, donde r es una variación del valor nominal. Sustituyendo esto en la ecuación esta queda como:

$$V_{TH} = V_{s} \left[\frac{1}{2} - \frac{R+r}{R+R+r} \right] = V_{s} \left[\frac{1}{2} - \frac{R+r}{2R+r} \right]$$
 (2)

Usando la aproximación en series de Taylor de 1er grado a la ecuación 2, se tiene la función f(r) alrededor de r=0, lo cual está dado por la ecuación (3).

$$f(r) = V_s \left[\frac{1}{2} - \frac{R+r}{R+R+r} \right] f(r) = f(a) + \frac{f'(a)}{1!} (x-a)$$
 (4)

Sea $f(r) = V_{th}$, la ecuación (3), al aplicarle la expansión de series de Taylor con a=0, da lo siguiente

$$f(r) = -V_s \left[\frac{R}{(2R+a)^2} \right] \Rightarrow f'(r=a=0) = -V_s \left[\frac{1}{4R} \right]$$
 (4)

Finalmente la aproximación para el voltaje del puente queda expresada en la ecuación 5.

$$f(\mathbf{r}) = \mathbf{V}_{\mathrm{TH}} = \frac{-\mathbf{r}}{4\mathbf{R}} \mathbf{V}_{\mathrm{s}} \tag{5}$$

La comparación de la aproximación de la ecuación 1 con la 4 se muestra en la figura (2), para un puente con R= 10Ω y variaciones de RX de 0 a 30Ω (r varia de -10Ω a 20Ω). Como se puede ver alrededor de 10Ω tienen el mismo valor.

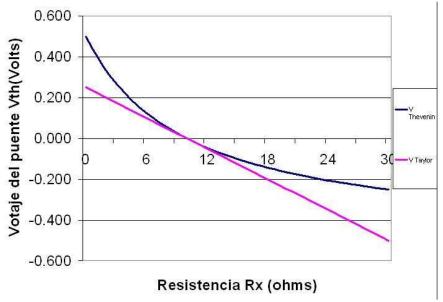


Figura 2. Gráfica de la ecuación 1 y 2 vs Rx con $R=10\Omega$

Procedimiento

- Calcular los componentes apropiados para el puente de Wheatstone como el que se muestra en la figura 1 de tal manera que se equilibre con una resistencia Rx= de 100Ω. El voltaje de la fuente de alimentación E=5V.
- 2. Simular el circuito de la figura 1 en un simulador eléctrico y variar Rx de 20Ω a 200Ω con incrementos de 20Ω . Anotar el voltaje medido en la columna 4 de la tabla 1.
- 3. Armar en el laboratorio el circuito calculado y varia RX de 20Ω a 200Ω con incrementos de 20Ω . Anotar el voltaje medido en la columna 5 de la tabla 1. Antes de cada medición ajustar el potenciómetro de 100Ω para tener el valor de Rx deseado. En caso de tener problemas usar resistencias discretas en lugar del potenciómetro. Para cada valor de resistencia anotar la precisión de la medición.
- 4. Como se muestra en la tabla 1 calcular el voltaje de Thevenin que se tiene en el puente, el cual está dado por la ecuación (1), y obtener el voltaje equivalente con la aproximación, la cual se calcula con la ecuación (5).

Tabla 1. Tabla para la captura de mediciones de la práctica.

Puente	Valor de Rx	Valor real De Rx	Voltaje obtenido Del simulador	Voltaje en el puente de Wheaston.	Voltaje teórico calculado con la Ecuación (1)	Voltaje Teórico calculado con la Ecuación (5)
1	20					
1	40					
1	60					
1	80					
1	100					
1	120					
1	140					
1	160					
1	180					
1	200					
2	200					
2	400					
2	600					
2	800					
2	1kΩ					
2	1.2 k Ω					
2	1.4 k Ω	_				
2	1.6kΩ					
2	1.8kΩ					
3	2kΩ					

5. Calcular el puente de Wheatstone para que este en equilibrio cuando $Rx=1k\Omega$. Variar Rx de 200Ω a $2k\Omega$ con incrementos de 200Ω . La fuente de voltaje E, del puente es de 10V. Simula el voltaje del puente en la columna correspondiente de la tabla 1.

- 6. Armar el circuito con un potenciómetro y/o resistencias discretas. En cada caso anotar el voltaje que se tiene en el puente y compararlo contra el voltaje del puente que se calcula con las ecuaciones (1) y (5).
- 7. Una vez terminada la práctica, realizar las graficas y mostrar la comparación entre la mediciones, lo obtenido por el simulador y las aproximaciones de las ecuaciones 1 y 5, todas ellas en la misma gráfica (para el mismo puente).

Reporte.

El reporte de la práctica deberá tener los siguientes puntos, en formato de artículo que lo pueden obtener de la página del curso. Las secciones que va a contener son:

Objetivos, Introducción teórica (Breve y concisa), Procedimiento, Resultados, Conclusiones, Bibliografía.

Además, todas las figuras y tablas que pongan deberán tener pie de figura con texto y hacer referencia a ellas en el texto.

Es impórtate que anoten el modelo, número de serie y marca de todos los instrumentos que usen y lo pongan en el reporte.