

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Ingeniería en Computación

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA

Teoría de la computación

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Tercero	025033	85

OBJETIVO(S) GENERAL(ES)DE LA ASIGNATURA

Proporcionar conocimientos sobre modelos de máquinas computacionales y teoría de la computación, así como sus respectivos lenguajes y gramáticas formales; facilitando su diseño e implementación de aplicaciones reales.

TEMAS Y SUBTEMAS

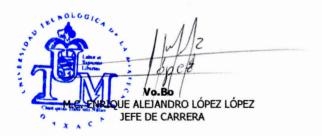
- 1. Introducción.
 - 1.1 Introducción a los autómatas finitos.
 - 1.2 Autómatas y complejidad.
 - 1.3 Conceptos centrales de la teoría de autómatas.
 - 1.4 Gramáticas formales.
- 2. Autómatas finitos.
 - 2.1 Definición y propiedades.
 - 2.2 Estructura general.
 - 2.3 Diagramas de transiciones.
 - 2.4 Autómatas finitos deterministas (AFD).
 - 2.5 Autómatas finitos no deterministas (AFN).
 - 2.6 Autómatas finitos con transiciones épsilon.
 - 2,7 Eliminación de las transiciones épsilon.
 - 2.8 Equivalencias entre AFN y AFD.
 - 2.9 Minimización de un AFD.
- Expresiones y Lenguajes Regulares.
 - 3.1 Expresiones regulares.
 - 3.2 Autómatas finitos y expresiones regulares.
 - 3.3 Aplicaciones de las expresiones regulares.
 - 3.4 Álgebra para las expresiones regulares.
 - 3.5 Lema del bombeo.
 - 3.6 Propiedades de la clausura.
- Gramáticas independientes de contexto.
 - 4.1 Definición y notación.
 - 4.2 Jerarquía de Chomsky.
 - 4.3 Derivaciones izquierda y derecha.
 - 4.4 Lenguaje de una gramática.
 - 4.5 Árboles de derivación.
 - 4.6 Aplicaciones de las gramáticas independientes de contexto.
 - 4.7 Ambigüedad en las gramáticas y lenguajes.
 - 4.8 Gramáticas regulares.
- 5. Autómatas de Pila.
 - 5.1 Definición.

- 5.2 Notación gráfica.
- 5.3 Lenguajes aceptados por un autómata de pila.
- 5.4 Equivalencia entre autómatas de pila y gramáticas libres de contexto. 5.5 Autómatas de pila deterministas (APD).
- 6. Propiedades de los lenguajes independendientes de contexto.
- - 6.1 Formas normales para gramáticas independientes del contexto (GIC).
 - 6.2 Lema del bombeo para lenguajes independientes del contexto (LIC). 6.3 Propiedades de la clausura de los LIC.
 - 6.4 Propiedades de decisión del los LIC.
- Máquina de Turing.
 - 7.1 Definiciones básicas.
 - 7.2 Máquinas de Turing como aceptadores de lenguajes.
 - 7.3 Construcción de máquinas de Turing.
 - 7.4 Hipótesis de Turing Church.
 - 7.5 Máquina de Turing universal. 7.6 Introducción a los lenguajes decidibles.
 - 7.7 El problema de paro.

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como son la computadora portátil, dispositivos de plataformas de ejemplo y el proyector de video. Asimismo, se desarrollarán programas de cómputo sobre los temas y los problemas del curso.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACION Y ACREDITACIÓN


Para aprobar el curso se realizarán tres evaluaciones parciales (50 %) y una evaluación final (50%), Para cada evaluación se realizará un examen y se evaluarán tareas y proyectos. El examen tendrá un valor mínimo de 50% y las tareas y provectos un valor máximo de 50%.

BIBLIOGRAFÍA (TIPO, TITULO, AUTOR, EDITORIAL Y AÑO)

- Básica: 1. Introducción a la Teoría de Autómatas, Lenguajes y Computación (2d Ed). Hopcroft, Motwan & Ullman. Addison
 - Wesley, 2002. Teoría de Autómatas y Lenguajes Formales. Dean Kelley. Prentice Hall. 1995. 2.
 - Introduction to the theory of computation (2d Ed). Sipser, Michael. Course Technology. 2006. 3.
 - Automata theory with modern applications. Anderson, James A. Cambridge University Press. 2006. 4.
 - 5. Automata and computability, Dexter C. Kozen, Springer, 1997.
 - Computability, complexity, and languages. Davis, M. D.; Sigal, R., Weyuker, Elaine. Morgan Kaufmann, Academic press professional, 1994.
- Consulta:
 - 1. Introduction to Algorithms(2d Ed), Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford, The Mit Press, 2001.
 - Autómatas Compiladores: Principios, técnicas y herramientas. Aho; Alfred V., Sethi; Ravi, Ullman; Jeffrey D. Pearson, 1998.

PERFIL PROFESIONAL DEL DOCENTE

Ingeniero en Computación o en Sistemas Computacionales con maestría o doctorado en computación.

VICE-RECTORIA ACADÉMICA

JEFATURA DE CARRERA INGENIERIA EN COMPUTACION