
Support Vector Machines for Multi-ClassPattern RecognitionJ. Weston and C. WatkinsDepartment of Computer ScienceRoyal Holloway, University of LondonEgham, Surrey, TW20 0EX, UKfjasonw,chriswg@dcs.rhbnc.ac.ukAbstract. The solution of binary classi�cation problems using sup-port vector machines (SVMs) is well developed, but multi-class problemswith more than two classes have typically been solved by combining inde-pendently produced binary classi�ers. We propose a formulation of theSVM that enables a multi-class pattern recognition problem to be solvedin a single optimisation. We also propose a similar generalization of lin-ear programming machines. We report experiments using bench-markdatasets in which these two methods achieve a reduction in the numberof support vectors and kernel calculations needed.1. k-Class Pattern RecognitionThe k-class pattern recognition problem is to construct a decision functiongiven ` iid (independent and identically distributed) samples (points) of anunknown function, typically with noise:(x1; y1); : : : ; (x`; y`) (1)where xi; i = 1; : : : ; ` is a vector of length d and yi 2 f1; : : : ; kg represents theclass of the sample. A natural loss function is the number of mistakes made.2. Solving k-Class Problems with Binary SVMsFor the binary pattern recognition problem (case k = 2), the support vectorapproach has been well developed [3, 5].The classical approach to solving k-class pattern recognition problems is toconsider the problem as a collection of binary classi�cation problems. In theone-versus-rest method one constructs k classi�ers, one for each class. The nthclassi�er constructs a hyperplane between class n and the k � 1 other classes.A particular point is assigned to the class for which the distance from themargin, in the positive direction (i.e. in the direction in which class \one" liesrather than class \rest"), is maximal. This method has been used widely in



the support vector literature to solve multi-class pattern recognition problems,see for example [4] or [2].Alternatively, (k(k�1)2 ) hyperplanes can be constructed (the one-versus-onemethod), separating each class from each other class and a decision functionconstructed using some ad-hoc voting system.3. k-Class Support Vector MachinesA more natural way to solve k-class problems is to construct a piecewise linearseparation of the k classes in a single optimisation.The binary SVM optimisation problem [5] is generalised to the following:minimise �(w; �) = 12 kXm=1(wm �wm) +C X̀i=1 Xm6=yi �mi (2)subject to (wyi � xi) + byi � (wm � xi) + bm + 2� �mi ; (3)�mi � 0; i = 1; : : : ; ` m 2 f1; : : : ; kg n yi:This gives the decision function:f(x) = argmaxn �(wn � x) + bn�; n = 1; : : : ; k: (4)Note �rst that for k = 2, this formulation of the optimisation problemreduces exactly to the binary SVM solution [5] if we take w1 = �w2, b1 = �b2,and �i = (1=2)�1i for pattern i in class 1 and �i = (1=2)�2i for pattern i in class2. Second, a decision function of the form (4) can be more powerful than a setof one-versus-rest binary classi�ers, in the sense that it is possible to constructmulti-class datasets that can be separated perfectly by a decision rule of type(4), but in which the training data cannot be classi�ed without error by one-versus-rest. For example, consider classes which lie inside segments of a ddimensional sphere (see [1] for details).We can �nd the solution to this optimisation problem in dual variables by�nding the saddle point of the Lagrangian:L(w; b; �; �; �) = 12 kXm=1(wm �wm) + C lXi=1 kXm=1 �mi� lXi=1 kXm=1�mi �((wyi � wm) � xi) + byi � bm � 2 + �mi � � lXi=1 kXm=1 �mi �mi



with the dummy variables�yii = 0; �yii = 2; �yii = 0; i = 1; : : : ; `and constraints�mi � 0; �mi � 0; �mi � 0; i = 1; : : : ; ` m 2 f1; : : : ; kg n yiwhich has to be maximised with respect to � and � and minimised with respectto w and �. Introducing the notationAi = kXm=1�mi and cni = ( 1 if yi = n0 if yi 6= nand through various manipulations (omitted due to lack of space) we arrive at:maximiseW �(�) = 2Xi;m �mi + Xi;j;m � � 12cyij AiAj + �mi �yij � 12�mi �mj �(xi � xj) (5)which is a quadratic function in terms of alpha with linear constraintsX̀i=1 �ni = X̀i=1 cni Ai; n = 1; : : : ; kand 0 � �mi � C; �yii = 0; i = 1; : : : ; ` m 2 f1; : : : ; kg n yi: (6)One can �nd the values bn; n = 1; : : : ; k by solving a set of simultaneousequations from the Kuhn-Tucker optimality conditions or by obtaining themas the values of the dual variables when using an interior point optimizer (asnoted by A. Smola and B. Sch�olkopf). One then obtains the decision function:f(x) = argmaxn � X̀i=1(cni Ai � �ni )(xi � x) + bn�: (7)As usual the inner products (xi � xj) in (5) and (7) can be replaced with ageneralised inner product K(xi; xj) (see [5]).4. k-Class Linear Programming MachinesOne can also consider the generalisation of the linear programming machinemethod [6]. One can minimise the following linear program:X̀i=1 �i +C X̀i=1 Xj 6=yi �ji



subject toXm:ym=yi �mK(xi; xm) + byi � Xn:yn=yj �nK(xi; xn) + byj + 2� �ji�i � 0; �ji � 0; i = 1; : : : ; `; j 2 f1; : : : ; kg n yiand use the decision rulef(x) = argmaxn ( Xi:yi=n�iK(x; xi) + bn):In this formulation there are only ` coe�cients, independent of the numberof classes, k, whereas in the other methods there are `k coe�cients. Further-more, the regularization directly attempts to reduce the number of non-zerocoe�cients.5. Further analysisFor binary SVMs the expectation of the probability of commiting an error ona test example is bounded by the ratio of of the expectation of the numberof training points that are support vectors to the number of examples in thetraining set [5]:E[P (error)] = E[number of training points that are support vectors](number of training vectors) � 1 (8)This bound also holds in the multi-class case for the voting scheme methods(one-against-rest and one-against-one) and for our multi-class support vectormethod. This can be seen by noting that any training point that is not asupport vector is still classi�ed correctly when it is left out of the training set.Note that this means we are interested in the size of the union of the set of allsupport vectors that de�ne each hyperplane in the classi�er, which is equivalentto the number of kernel calculations required, rather than the sum of the sizesof the sets.Secondly, it is worth noting that the solution of the one-against-rest methodis a feasible solution of our multi-class method, but not necessarily the optimalone. This can be seen by considering the one-against-rest method as one formalstep. In the hard margin case (C =1) one is required to minimizePkm=1(wm �wm) with constraints wyi � xi + byi � 1 and wj � xi + bj � �1 for i = 1; : : : ; `and j 2 f1; : : : ; kgnyi. One can see that if these constraints are satis�ed so areconstraints (3). This means that our multi-class method will have the same orlower value of Pkm=1(wm � wm), where a small value of (w � w) in the binarycase corresponds to low VC dimension and large margin (which mean goodgeneralization).



Table 1: Comparison of Error Ratesname #pts #atts #class 1-v-r 1-v-1 mc-sv mc-lpiris 150 3 4 1.33 1.33 1.33 2.0wine 178 13 4 5.6 3.6 3.6 10.8glass 214 9 7 35.2 36.4 35.6 37.2soy 289 208 17 2.43 2.43 2.43 5.41vowel 528 10 11 39.8 38.7 34.8 39.6postal 500 256 10 9.36 8.37 9.67 13.9Table 2: Comparison of the Number of Support Vectors1-v-r 1-v-1 mc-sv mc-lpname svs k-calcs svs k-calcs svs k-calcs svs k-calcsiris 75 40 54 40 46 31 13 13wine 398 136 268 135 135 110 110 110glass 308 131 368 127 203 113 72 72soy 406 197 1669 229 316 160 102 102vowel 2170 439 3069 774 1249 348 238 238postal 651 294 1226 285 499 249 114 1146. SimulationsWe tested our method on a collection of �ve benchmark problems from theUCI machine learning repository1. Where no test set was provided the datawere each split randomly ten times with a tenth of the data being used as atest set. The performance of the multi-class support vector method (mc-sv)and multi-class linear programming method (mc-lp) were compared with one-versus-rest (1-v-r) and one-versus-one (1-v-1) binary classi�cation SV meth-ods. To enable comparison decision functions were constructed with a hardmargin (parameter C =1) and the same radial basis function kernel for eachalgorithm. The results are summarised in Tables 1 and 2.mc-sv performed comparably with the voting scheme methods, but hada smaller number of non-zero coe�cients (svs) and kernel calculations (k-calcs)2. Note this means lower values of the upper bound on generalizationerror (8). mc-lp had a signi�cantly reduced number of svs and k-calcs (theyare equivalent because each inner product has only one associated multiplier)1URL:http://www.ics.uci.edu/mlearn/MLRepository.html. The training set \postal" isthe �rst 500 examples of the U.S Postal service database (LeCun et al., 1989), using thewhole testing set.2The number of kernel calculationswill usually be less than the number of support vectorsin all the algorithms as they can be cached if two support vectors use the same kernelcalculation.



but did not achieve good generalization ability. We have since realized thiscould be due to the di�erence in the decision rules between the methods: mc-lp has a di�erent number of basis functions in its decision rule (` instead of `k)and may perform well with very di�erent choices of kernel to the other threemethods, but we kept the choice �xed.7. ConclusionsIn conclusion, we have described two new methods of solving multi-class pat-tern recognition problems with support vector machines. Results obtained onthe benchmark datasets suggest that the new methods can reduce the num-ber of support vectors and kernel computations. One can construct exampleswhere the new methods will separate data but voting scheme methods cannot.However, this has not been re
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