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Abstract
Pattern recognition is concerned with the development of systems that learn to solve a given problem using a set of
example instances, each represented by a number of features. These problems include clustering, the grouping of
similar instances; classification, the task of assigning a discrete label to a given instance; and dimensionality reduction,
combining or selecting features to arrive at a more useful representation. The use of statistical pattern recognition
algorithms in bioinformatics is pervasive.Classification and clustering are often applied to high-throughput measure-
ment data arising from microarray, mass spectrometry and next-generation sequencing experiments for selecting
markers, predicting phenotype and grouping objects or genes. Less explicitly, classification is at the core of a wide
range of tools such as predictors of genes, protein function, functional or genetic interactions, etc., and used exten-
sively in systems biology. A course on pattern recognition (or machine learning) should therefore be at the core of
any bioinformatics education program. In this review, we discuss the main elements of a pattern recognition
course, based on material developed for courses taught at the BSc, MSc and PhD levels to an audience of bioinfor-
maticians, computer scientists and life scientists. We pay attention to common problems and pitfalls encountered
in applications and in interpretation of the results obtained.
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INTRODUCTION
Over the past two decades, techniques used for a

variety of molecular measurements have dramatically

improved: cost has dropped, and throughput has

increased by many orders of magnitude. Examples

include the microarray for measuring transcripts or

genotyping [1]; mass spectrometry for protein and

metabolite levels [2]; and, most recently, next-gen-

eration sequencing for genomics and transcriptomics

[3]. The resulting enormous increase in the volumes

of data produced has likely been the most important

factor underlying the rapid growth of bioinformatics

over the past decade, as dedicated computational

tools are essential to help handle, manipulate and

make sense of it [4].

Where traditionally, measurements are used to

test pre-defined (a priori) hypotheses, a more data-

driven approach is increasingly taken in which

high-throughput measurement data are mined to

answer a posteriori formulated questions [5]. For ex-

ample, which of the 50 000 probes on a microarray

show differential expression between two condi-

tions? Which genomic variation is predictive of a

certain phenotype? Such questions often share the

fact that a theoretical model of the system studied

is lacking (or too complex to formulate), yet a large

amount of noisy measurement data are available. The

core challenge is therefore generalization, i.e. deriv-

ing approximate predictive ‘black-box’ models for a

biological phenomenon [6].

This development has led to an increasing use of

techniques from the computer science discipline of

artificial intelligence [7]: data mining, concerned

with the analysis of large unstructured datasets,

with an emphasis on finding recurrent patterns [8];

machine learning, focusing on efficient algorithms
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to handle a variety of problems on (mostly) large-

scale structured data [9]; and pattern recognition

[10–13], taking a more engineering-based ap-

proach: how should data be modeled and algorithms

be developed to effectively answer a certain ques-

tion, given a set of measurements on objects

and, optionally, a set of matching desired outputs

(labels)?

Pattern recognition (related to, but not the same

as, pattern matching, looking for specified patterns in

sequences or pattern detection, looking for novel

patterns in sequences) has been remarkably successful

in helping to explore and exploit high-throughput

measurement data. A good example is a seminal art-

icle on microarray-based breast cancer prognosis

[14], which showed that dimensionality reduction

and classification give insight into the molecular

mechanisms underlying prognosis, but also aid trans-

lational medicine; microarray-based tests based on

this work are now routinely used in the clinic [15].

More recently, the ENCODE consortium [16]

depended heavily on a variety of classification and

clustering algorithms in studies investigating the

interplay between transcription, transcription factor

binding, histone modification, chromatin accessibil-

ity, etc. [17].

As the analysis of high-throughput data becomes

increasingly central to modern biology, it is essential

that bioinformatics students learn about pattern rec-

ognition/machine learning. In this article, we review

pattern recognition basics that should be part of any

course on the topic. As space is limited, we will not

supply much mathematical detail, but instead refer to

a number of excellent textbooks on pattern recog-

nition for further reading. We will focus on the gen-

eric principles underlying available methods and the

main pitfalls in their application, rather than on the

strengths and weaknesses of individual algorithms be-

cause correct application and particularly interpret-

ation of results is often the hardest issue for pattern

recognition students. We conclude with a brief over-

view of recent developments and give a list of avail-

able generic software tools for pattern recognition.

Box 1 defines the key terms used throughout this

article.

PATTERNRECOGNITION
Since its birth in the 1950s, a number of different

views on pattern recognition have been taken,

focusing on syntax, structure or statistics of the

data studied. Statistical pattern recognition has

become the predominant paradigm [18] and is

mainly concerned with developing theory and

methods for

� clustering—do objects form natural groups?

� dimensionality reduction—can we extract

informative features out of the measurements?

� classification—can we predict labels of new

objects?

Figure 1 illustrates these three problems. Regression,

similar to classification but concerned with the pre-

diction of real-valued outputs, is not considered as

widely as the problems above [12, 13]. Note that

there is a clear distinction between supervised and

unsupervised pattern recognition problems. In the

former, data extraneous to the measurement process,

such as labels, are available, and in the latter, they are

not. Clustering is an unsupervised problem, classifi-

cation a supervised one and dimensionality reduction

can be cast in both forms.

Pattern recognition applications follow a pattern

recognition pipeline, a number of computational ana-

lysis steps taken to achieve the goal [11]. Figure 2

illustrates this for classification. The starting point of

any application is the collection of a set of training

objects, assumed to be representative of the problem

at hand and thus for new objects to which the system

will be applied later. The first stages then consist of

translating raw measurements into data usable for fur-

ther processing. Some pre-processing (steps A–B in

Figure 2) is handled by measurement devices or

accompanying software itself: next-generation se-

quencers deliver base calls (and quality estimates)

extracted from raw trace data, and microarray scans

are often normalized and summarized using device-

specific algorithms, etc. Further pre-processing is usu-

ally specific to the problem at hand and depends on

available prior knowledge. Quality inspection is also

important: to avoid problems in subsequent analyses,

erroneous measurements (outliers) should be detected

and removed [19], and missing values imputed [20].

After pre-processing, measurements are adequately

represented, usually as features (C). Then a subset of

informative features is selected (D) and used to train a

classifier, i.e. to set the parameters of an algorithm that

predicts a label, given a set of measurements (E).

Finally, the performance of the classifier is evaluated

on test data not used before (F). In the remainder of

this review, we will focus on steps C–F.
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DATA REPRESENTATION
In step C, the measurements are represented in a

format suitable for further processing. Having a

good representation is perhaps the most important

step toward satisfactorily solving a pattern recogni-

tion problem; no matter how advanced the algo-

rithms in later stages, if too much information is

lost in this step, good performance will be impossible

to obtain. Most pattern recognition algorithms as-

sume that an object is represented by a feature

vector x of real-valued numbers. Often, this is

straightforward: for microarray data, a vector of

gene expression levels represents an object.

Additional real-valued data, for example, clinical

measurement
device

pre-processing

representation

classifier

feature
selection

evaluation

test 
set

training 
set

A

B

C

D

E

F

Affymetrix
microarray scanner

background removal,
normalization

probeset
summarization

support vector
classifier

marker gene
selection

prediction
error

mass
spectrometer

baseline removal,
peak alignment

peak calling

linear discriminant
analysis

marker peak
selection

receiver-operator
characteristic curve

(a) (b) (c)

Figure 2: (A) The pattern recognition pipeline for classification. (B and C) Two examples in bioinformatics.

A B C

Figure 1: Three types of analysis illustrated on a dataset with two classes and two measurements. (A) Clustering:
using a mixture of Gaussians, four clusters are fitted to the data. (B) Dimensionality reduction: in linear discriminant
analysis, the data are projected on a line such that the classes are separated as well as possible. (C) Classification:
the decision boundary of a support vector classifier (3rd degree polynomial kernel) separates the two classes.
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data, can easily be added to such a feature vector. In

some cases, prior knowledge on the problem or

characteristics of the classifier make it useful to

scale (e.g. to zero mean, unit standard deviation),

transform (e.g. taking a log or square root) or com-

bine (e.g. add or multiply) elements in feature vec-

tors before further processing.

The representation of binary (0/1), ordinal

(1/2/3/. . .), qualitative (‘red’/‘green’/‘blue’), se-

quential (‘ACTGAATA’) or structural data is more

complicated; either it is simply interpreted as real

values (which usually leads to a loss of information)

or it needs to be converted into a more suitable

format. It is often natural to use a relative rather

than an absolute representation of such data [21].

For example, while it is hard to represent a gene

sequence by (a vector of) real values, it is quite nat-

ural to represent it by a vector of dissimilarity meas-

ures (e.g. BLAST E-values) to a set of representative

sequences [22]. Likewise, gene expression profiles

can be represented as correlations to expression pro-

files of other genes. Some algorithms, such as the

nearest neighbor classifier, which assigns a test

object the label of the most similar objects in the

training set, can directly use such dissimilarities as

input.

A relatively new development, driven to a large

extent by applications in bioinformatics, is that of

representing object pairs (X,Y) by kernels K(X,Y)

[23]. Kernels are functions that, under certain con-

straints, allow relatively simple algorithms to operate

on complex representations of objects in high-

dimensional feature spaces, without the need of

explicitly calculating those representations. The de-

velopment of the support vector classifier [24],

which derives much of its power in applications

from using kernels (‘Classification’ section), was fol-

lowed by a large number of proposals for kernels

and kernel-based methods for bioinformatics. For

objects X,Y represented by feature vectors x and y,

there are, for example, polynomial kernels

K(x,y)¼ (xTyþ c)d (the inner product plus a con-

stant c raised to the power d) and radial basis function

kernels, for example, the Gaussian K(x,y)¼

exp(� ckx�yk2).
However, kernels can also be defined for objects

with other representations. For sets, e.g. of functional

annotations or words in documents, there are set

kernels; spectrum, motif and local alignment kernels

are used to represent protein and gene sequences;

P-kernels and Fisher kernels allow comparison of

probabilistic models such as hidden Markov models

(HMMs); and using graph and tree kernels, even

complex structures can be compared [25]. Addition-

ally, kernels representing different aspects of an

object (say, a vector of concentration measurements,

a set of functional annotations and a sequence of a

protein) can easily be combined into a single kernel

by simply adding the output of the individual kernel

functions [26]. This makes kernel representations

very powerful in bioinformatics.

PATTERNRECOGNITION
ALGORITHMS
Clustering
A first natural question to ask when exploring a large

dataset is whether it clusters, i.e. contains distinct

subgroups of similar objects. Such groups may lead

to new insights [27]. For example, genes whose ex-

pressions over a range of microarray experiments are

similar may be functionally related, and the ‘guilt-

by-association’ principle can be used to infer the

function of uncharacterized genes. Likewise, proteins

are clustered based on sequence similarity to learn

about orthology, organisms based on genome simi-

larity to find phylogenetic trees, patient samples

based on high-throughput measurements to discover

distinct disease subtypes, etc.

There are two main types of clustering algorithms:

partitional and hierarchical. In the first, a certain

(simple) cluster model is assumed, and the fit of a

number of such models to the data is optimized.

Examples of partitional methods are k-means and

Gaussian mixture models (GMMs; Figure 1a), but

there is a large body of literature on different clus-

tering methods [28]. In hierarchical clustering, in

contrast, a dendrogram is constructed, usually by it-

eratively grouping objects and clusters that are most

similar (Figure 3a). This dendrogram can subse-

quently be cut at a certain level to end up with a

specific number of clusters (Figure 3b). Hierarchical

clustering has become popular in the microarray era

to help create heatmaps [29].

Irrespective of the type of algorithm used, a user

defines or assumes—perhaps implicitly—what

number of clusters to look for, when objects are

similar (e.g. using dissimilarity measures discussed in

‘Data Representation’ section), and/or what consti-

tutes a cluster (e.g. in GMMs, a group of objects

following a normal distribution). Similar assumptions

can be used to estimate the number of clusters [30]
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or to evaluate a clustering [31]. It is important to

realize that different assumptions can lead to very

different groupings. A clustering is therefore never

an objective result: finding that objects group is not

proof (yet) of a relation, but at most a starting point

for further experimentation.

A source of confusion is the distinction between

clusters and classes, i.e. groups of objects that share a

label. These can be quite distinct: a cluster may con-

tain various classes if classes overlap; vice versa, a class

may consist of various clusters, for example, when a

single phenotypic label (e.g. ‘diseased’) is assigned to

objects that show heterogeneity in the underlying

molecular causes (e.g. various forms of that disease).

As such, the term ‘unsupervised classification’ some-

times used for clustering is somewhat of a misnomer.

Dimensionality reduction
Where clustering summarizes the dataset by combin-

ing objects, likewise techniques are available to find a

smaller number of features that adequately represent

the original p measurements. An important applica-

tion is visualization, reducing the number of features

to two or three [32]. Dimensionality reduction is

especially useful in determining sparse feature repre-

sentations by discarding noisy or irrelevant measure-

ments or by combining relevant measurements into a

smaller number of features. This ensures fewer par-

ameters have to be estimated (see ‘Classification’ sec-

tion). An example of this is marker gene selection in

microarray-based classification [33]. In fact, a coun-

ter-intuitive effect is that removing features may

improve results, the so-called ‘peaking phenomenon’

[34] (‘Fundamental Issues’ section). Finally, the

subset of features relevant to a problem can give in-

sight into the biology underlying it. For example,

subsequences important for protein secretion may

give insight into protein sorting and trafficking

[35]. However, dimensionality reduction is not

aimed at improving acquiring novel biological in-

sight per se. Supervised feature selection based on

cross-validation (‘Fundamental Issues’ section), for

instance, does not guarantee stable feature sets

which are therefore not directly suitable for biolo-

gical interpretation, a problem first encountered in

investigating so-called disease ‘gene signatures’ found

in microarray data [36–39].

Dimensionality reduction can be performed both

supervised and unsupervised. For the former, the

goal is to decrease the number of features while re-

taining as much information as possible about the

classification or regression problem to be solved

later. A major distinction here is between feature

selection, selecting a subset of the original measure-

ments, and feature extraction, combining measure-

ments into new features, as illustrated in Figure 4.

Feature selection [40] is a very computationally in-

tensive problem, so a number of suboptimal methods

have been proposed. The simplest method, filtering,

orders all features using a criterion indicating how

useful they are, for example, by a measure of class

separation such as the t-statistic (Figure 4), and adds

one feature at a time until performance stops im-

proving. More complex forward and backward

A B

Figure 3: Hierarchical clustering. (A) The dendrogram joins objects and clusters; the height of the stem indicates
their distance. (B) The clustering resulting when the dendrogram is cut at the dotted line.
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search methods consider the possibility that two in-

dividually poor features may together be informative

[41]. Feature extraction, in contrast, attempts to find

a transformation y¼ f(x) for the original feature

vector x. A well-known supervised feature extrac-

tion method is ‘linear discriminant analysis’ [42],

which takes on the simple form y¼Ax, where ma-

trix A is found to minimize within-class variation

while maximizing between-class variation (Figure

1b). For both selection and extraction, care should

be taken to avoid overfitting (‘Fundamental Issues’

section). In particular, in high-throughput measure-

ments, it is often easy to find features predictive of

the class label of individual training objects only as a

result of noise; such features will provide little to no

information for new objects.

Unsupervised dimensionality reduction uses cri-

teria that do not depend on class labels or target

outputs but rather on intrinsic properties of selected

or extracted features. A well-known example is prin-

cipal component analysis (PCA). It provides yet an-

other linear transformation y¼Ax, in which the

orthogonal vectors in A are chosen to maximize

the variation retained in the resulting y [43]. A simi-

lar but nonlinear transformation that attempts to

preserve distances or dissimilarities between objects

is multidimensional scaling (MDS) [44]. Both

PCA and MDS are often used for visualization and

‘visual clustering’ of high-throughput measurement

data: if groups of objects are distinct in a 2D/3D

representation y of the original data, they are

likely to correspond to interesting biological phe-

nomena [32].

Classification
The most widely studied question in pattern recog-

nition is how to design classifiers, algorithms assign-

ing labels to previously unseen objects, given a

training set of objects x with accompanying labels

o. The most obvious examples of classifiers in bio-

informatics are those used for diagnosis and prognosis

based on molecular measurements in medical appli-

cations, e.g. microarrays [14, 45]. Although less ex-

plicitly, classifiers are also used at the core of a variety

of tools, some dating back to the 1970s [46]. For

example, for gene annotation, a model of a gene

sequence is trained, often an HMM, which is then

applied to new genomes to detect initial open read-

ing frames (ORFs) [47]. Similarly, proteins are as-

signed (putative) secondary structure, functions,

locations and interactions using sequence-based clas-

sification [48].

There are two main distinct approaches to classi-

fication: either based on Bayesian decision theory or

aiming to directly minimize some measure of the

prediction error [49]. In the first, a classifier updates

a prior probability of observing a certain label o,

P(o), using the observation of a number of objects

with that label. This results in a class-conditional

probability distribution P(xjo) of observing certain

values for features, x, given the label o. Using the

prior probability P(o) of observing a label o, Bayes’

rule is then applied to transform this into a posterior

distribution: P(ojx)¼P(xjo)P(o)/P(x), i.e. the

probability distribution of observing label o, given

feature values x. Given a new object x, the label o
that maximizes this posterior can then be assigned. As

a result, the decision boundary (the line dividing re-

gions of space in which objects are assigned to dif-

ferent classes) can be found where the posterior

distributions for two classes are equal. This is illu-

strated in Figure 5. Although theoretically appealing,

in practice, a choice will have to be made how to

model P(xjo), leading to the name ‘plug-in

classifier’.

The problem of estimating class-conditional prob-

ability distributions from a limited set of objects is

hard. In parametric approaches aimed at solving this

problem, a certain functional form is assumed for

each P(xjo), most often a Gaussian distribution

[42]. As in many realistic bioinformatics problems,

particularly those involving high-throughput meas-

urements, the number of parameters p is far larger

than the number of objects n (the ‘p� n’ problem),

estimating full distributions is often infeasible, and

t = 11.92
t =

 1
.4

9

Figure 4: Feature selection. The feature on the x-axis
separates the classes better than the feature on the y-
axis, as indicated by the t-statistics.
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simplifying assumptions are used [49], e.g. that

covariances of all class-conditional distributions are

identical (giving a linear decision boundary), that

there is no covariance between features or even

that all feature variances are equal (the nearest

mean or nearest centroid classifier) [50]. Taking sim-

plification even further, the ‘nearest shrunken cen-

troid classifier’ [51] has feature selection built in.

Note that it is also possible to use prior knowledge

to construct more complex models for P(xjo), such

as HMMs for gene sequences [47]. In nonparametric

approaches, probability distributions are estimated

without assuming a functional form, but rather by

aggregating local density contributions of nearby ob-

jects. Well-known methods include histogramming,

kernel density estimation [52] and the nearest

neighbor method [49]. These bypass the parameter

estimation problem, but are easily overfitted

(‘Fundamental Issues’ section).

As an alternative, one can estimate the decision

boundary directly, without first estimating densities.

One of the most simple methods, Fisher’s linear dis-

criminant, assigns a target value of �1 to objects in

one class and of þ1 to objects in the other class, and

attempts to find the weights w and b that minimize

the difference between the output of a linear func-

tion g(x)¼wTxþ b and these targets [42, 49]. The

decision boundary is then found where g(x)¼ 0. A

wide variety of classifiers are based on this principle.

Logistic regression and perceptron classifiers assume a

linear form for g(x); feed-forward artificial neural

networks have been widely used as universal func-

tion approximators for nonlinear g(x) [53]. Recently,

neural network research has been resurrected under

the name deep learning and has already found

application in bioinformatics [54]. Note that while

these classifiers bypass the problem of estimating

probability distributions, they are not immune to

parameter estimation problems on relatively small

datasets.

Two nonlinear classifiers are of particular interest

in bioinformatics: support vector classifiers and

decision trees. The support vector classifier is essen-

tially a simple linear classifier that aims to minimize

both the complexity of the classifier and the number

of misclassifications on the training set, grounded in a

solid theoretical framework called structural risk

minimization [55]. The so-called kernel trick (‘Data

Representation’ section) allows this framework to be

used to learn nonlinear decision boundaries (as

shown in Figure 1c) and to combine various sources

of input data such as sequences, structures, etc. This

flexibility makes the support vector classifier one of

the most widely used algorithms in current bioinfor-

matics [25].

Decision trees [56] take a different approach to

constructing a classifier, by constructing a tree in

which simple classifiers on single features (e.g. ‘is

the expression of gene g> 2.5?’) are iteratively

applied to select subsets of the data with the same

label. Decision trees can model highly nonlinear de-

cision boundaries. While decision trees are easily in-

terpreted, they are prone to overfitting. To remedy

this, random forests use many randomized trees and

combine their output, e.g. by majority vote [57]

(losing interpretability in the process). This is an ex-

ample of combining classifiers: using different classi-

fiers on the same data, or the same classifier on

different aspects or subsets of the data, to achieve

better performance or a more stable and trustworthy

prediction [58].

PERFORMANCE EVALUATION
For supervised pattern recognition problems, it is es-

sential to evaluate how well the trained system will

perform on new objects. For classification, the cri-

terion used most often is the prediction error, the

expected percentage of misclassified objects. When

costs of misclassification are available, for example,

those of incorrectly diagnosing a patient with a cer-

tain disease and vice versa, the total expected cost

could be calculated as well. Note that it is important

to take prior probabilities into account in classifier

design and evaluation whenever possible; in

Figure 5: The plug-in classifier. In quadratic discrimin-
ant analysis, both classes are modeled by a Gaussian
distribution.
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particular, when they are highly skewed, for ex-

ample, when detecting rare diseases.

In bioinformatics applications, prediction error is

not always the most informative criterion, in particu-

lar for problems where the goal is to distinguish one

target class [59]. Examples include the prediction of

interactions (genetic, protein, protein–DNA, etc.),

secreted proteins, relevant genetic variation, pathway

membership, etc. A more natural choice in these

cases is to calculate precision, the fraction of true

positives (true interactions) in all predicted positives,

and recall, the fraction of all positive objects

predicted correctly by the classifier. Widely used is

the receiver-operator characteristic (ROC) curve

(Figure 6a), which shows the trade-off between the

fraction of true positives and false positives as a func-

tion of a threshold on the output of the classifier, for

example, the difference in the posterior probability.

Each point on the ROC curve thus corresponds to a

classifier. The ROC is often summarized by a single

measure, the area under the curve (AUC). For a

perfect classifier, the AUC reaches 1, and for a clas-

sifier that randomly assigns labels, it is 0.5. Note that

as the axes reflect fractions rather than actual num-

bers, it may be wise to focus on only the (area under

the) first part of the ROC [60].

Performance estimates based on the objects used to

train a system will be too optimistic, i.e. biased: the

system has seen these objects before, so they are no

longer representative of new objects. Classifiers se-

lected based on such estimates are likely to be heavily

overfitted (adapted to the training data at hand) and

will not generalize well on new data. Evaluation thus

requires keeping apart objects that can serve as a test

set, not used in any way to train the system, set

parameters or make choices. In problems with limited

datasets, this is wasteful. Therefore, often a form of

cross-validation [61] is applied. In k-fold cross-valid-

ation, the dataset is randomly split into k roughly

equal parts, and a classifier is trained on k� 1 parts

and tested on the remaining part k times. The cross-

validation error estimate is then the average error over

these k-folds. For k¼ n, this is called leave-one-out

cross-validation. Note that care should be taken when

applying cross-validation to small numbers of samples,

as the variance of the resulting error estimate will

make it unreliable. In this case, bootstrapping [62] is

a better, although more biased, choice.

Performance evaluation is not only the last step in

the pattern recognition pipeline, but also used for

intermediate steps such as feature selection. To

avoid overly optimistic error estimates [63], it is im-

portant to use a separate set of objects for such cases

(called a validation set) or use cross-validation

(or bootstrapping), leading to multiloop schemes

with a feature selection cross-validation inside a

training cross-validation [64].

FUNDAMENTAL ISSUES
A core problem in pattern recognition is generaliza-

tion: how and under what circumstances can we use

a limited set of data to predict well for unseen ob-

jects? A related question is model selection: what is

the optimal model (e.g. classifier) complexity for a

given problem? Given unlimited data, we could train

highly complex models, fit their parameters well and

achieve optimal performance. In practice, however,

the number of training objects is severely limited

by cost of measurement or lack of availability. This
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Figure 6: (A) An ROC curve for the classifier in Figure 5, where the left class is considered the positive class.The
dashed line indicates the expected performance of a classifier that makes random decisions. (B) Learning curves
for the same classifier.
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so-called small sample size problem—often com-

bined with large numbers of possibly informative

features, the ‘p� n’ problem—means we cannot

train arbitrarily complex models. As a result, given

a certain dataset size, there is a limit to the number of

features we can exploit to train a classifier, the so-

called peaking phenomenon [34] resulting from the

curse of dimensionality [65].

To learn about generalization, learning curves

(Figure 6b) help to estimate the minimum achievable

error and can be extrapolated to see whether there is

room for further improvement by increasing the

number of objects available. For model selection, a

number of theoretical approaches have been de-

veloped. At a high level, they all approach this prob-

lem as a trade-off between model complexity, i.e.

the range of problems that a model can solve, and

model descriptiveness, i.e. how well it solves the

problem at hand. The optimal model is the one

that is maximally descriptive with minimal complex-

ity, i.e. is just complex enough to solve the given

problem. The individual frameworks—Bayesian

model selection [66], the minimum description

length principle [67] and structural risk minimization

[55]—start from different sets of assumptions, but

lead to similar conclusions. While full Bayesian

model selection is rarely used in practice, given its

complexity, derived approaches such as regulariza-

tion—i.e. penalizing high weights indicative of com-

plex classifiers, or penalizing the number of features

used—are routinely used to avoid overfitting [12,

68]. The structural risk minimization framework

gives generalization bounds used in deriving the sup-

port vector classifier mentioned earlier, which

attempts to minimize a combination of the weights

of a classifier and the error it makes [24].

The most important message to convey in any

course is that in practice, solving a pattern recogni-

tion problem remains a skill in which a number of

different approaches are tried to learn what works

well and what does not, always keeping in mind

the recommendations given above to rigorously

guard against overfitting and misinterpretation of

results. Most classifiers have their niche, but proposals

for novel classification schemes promising good

performance should be taken with a grain of salt

[69]. Often, the simplest approaches (such as hier-

archical clustering, PCA and linear discriminants)

work best, in particular with high-throughput meas-

urement data. The best way for students to learn this

is to experience it themselves in practice, for

example, by ending a course with a small project

in which they analyze their own dataset, or a

dataset corresponding to a classic publication (e.g.

[14, 45, 70]).

DEVELOPMENTS
Newmodels and algorithms
Recent developments in pattern recognition and

machine learning focus not as much on novel algo-

rithms for existing problems as on finding solutions

to (slightly) differently posed problems. Many of

these algorithms are potentially useful in bioinfor-

matics, but have not yet been extensively explored

in literature. Examples are as follows:

� Bag-of-instances representations [71] of objects. In

multiple instance learning, the problem is con-

sidered where such a bag is labeled positive if at

least one instance is labeled positive [72]. This

has already found application in drug discovery,

relating possible structure of molecules to activity

[73] and in predicting protein binding sites

[74, 75].

� Semi-supervised learning [76], for cases where a

large number of unlabeled objects are available

besides a small set of labeled objects. This has

already been exploited in prediction of gene func-

tion [77], in expression-based clustering [78, 79],

prognosis [80, 81] and in the prediction of tran-

scription factor binding sites [82]. A related devel-

opment is that of positive unlabeled learning,

assuming that some objects have a (single positive)

label and the remainder is unlabeled [83], useful

for protein–protein, genetic interaction data, etc.

This has been used for predicting disease genes

[84, 85] and delineating regulatory networks [86].

� Structured learning [87], predicting arbitrarily

shaped output rather than a single label.

Methods include HMMs [88] and, more recently,

structured support vector machines and condi-

tional random fields [89]. These have been applied

for predicting gene structure (introns/exons) [46],

protein secondary structure [90], drug activity

[91], enzyme function [92] and interaction

networks [93]. A particular case is multilabel learn-

ing, where several (hierarchically and ontologic-

ally) related labels are output, such as in

predicting Gene Ontology annotations [94].

� In active learning [95], a classifier is used to decide

which unlabeled object should be labeled next to
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best improve the classifier. Applications already

explored include diagnosis [96], gene expression

sampling [97], drug discovery [98] and predicting

protein interactions [99] and transmembrane heli-

ces [100]. Active learning is often used implicitly,

when classifier predictions are ranked and the most

confident ones are verified experimentally first

[101, 102]. Dedicated techniques could further

enable current models to guide further experi-

mentation [103].

Challenges
Next to the developments in pattern recognition

itself, new challenges in biology also promise to

place new demands on models and algorithms:

� It will be increasingly challenging to tie together

various heterogeneous data sources in a single ap-

plication. Pattern recognition algorithms will have

to be more robust to missing data, better able to

deal with various types of data and scalable to

many more objects. Given limited storage and

bandwidth, algorithms may have to be able to

work on compressed or summarized data.

� As tools for measuring and particularly manipulat-

ing the cell become more widely available, pattern

recognition should help close the systems biology

loop by supporting researchers in setting up ex-

periments. Given a limited experimental budget,

which interventions together with which meas-

urements are likely to increase our knowledge

most? Active learning may prove very useful.

� It becomes increasingly important to help users to

interpret why a pattern recognition algorithm pre-

dicts what it does. This calls for a move from

black-box to grey-box models, which allows for

a gain in biological knowledge. This requires a

shift in emphasis from the performance of a trained

predictor to its make-up, stability and unique-

ness—are the parameters found meaningful or

due to chance?

CONCLUSION
In this review, we presented the core elements of a

pattern recognition course: data representation; the

problems of clustering, dimensionality reduction and

classification; performance evaluation; and model se-

lection. We focused on the major issues and potential

pitfalls in application and in interpretation of the re-

sults. Table 1 lists a number of software packages that

can be used to solve pattern recognition problems;

together with a textbook on pattern recognition

[10–13] and data available online (for example, at

http://www.ebi.ac.uk/arrayexpress/, http://www.

ncbi.nlm.nih.gov/geo/, http://www.broadinstitute.

org/cgi-bin/cancer/datasets.cgi), these could be the

starting point for setting up a pattern recognition

course.

Most of the examples discussed were rather simple

applications of pattern recognition tools to solve

straightforward prediction tasks in bioinformatics. It

is good that students realize that pattern recognition

is also widely used as part of larger bioinformatics

tools. For example, software for detecting biological

events in image and signal data uses classification al-

gorithms; genome annotation pipelines depend, to a

large extent, on detectors [105]; and visualization

tools use clustering and dimensionality reduction

[32]. Pattern recognition tools are also used as build-

ing blocks in the construction of systems biology

models and networks, e.g. to predict and prioritize

putative functional interactions between proteins

[106], to learn regulatory modules [107], to link

complex genotypes to phenotypes [106, 108], etc.

Because it is unlikely that detailed mechanistic

models of various cellular processes will become

available soon, pattern recognition is likely to

remain an essential tool in any bioinformatician’s

toolkit for some time.

Key Points

� Pattern recognition, concerned with algorithms that learn to
solve a problemusing a limited setofmeasurementdata, is an es-
sential part of bioinformatics education.

� The representation of the original measurementsças features,
dissimilarities or kernelsçis a decisive factor in obtaining good
performance.

� Unsupervised analyses such as clustering can help to interpret
the data and may give new insights, but never yield objective
‘proof’of a finding.

� In performance evaluation, use a separate test set or cross-valid-
ation to guard against overfitting, a significant risk especially on
high-throughput data.

� The core problem in pattern recognition is that of model selec-
tion: choosing a model with minimum complexity and maximal
descriptiveness.
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