Bison

The YACC-compatible Parser Generator
November 1995, Bison Version 1.25

by Charles Donnelly and Richard Stallman




Copyright © 1988, 89, 90, 91, 92, 93, 1995 Free Software Foundation

Published by the Free Software Foundation
59 Temple Place, Suite 330

Boston, MA 02111-1307 USA

Printed copies are available for $15 each.
ISBN 1-882114-45-0

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided also that the sections entitled “GNU General
Public License” and “Conditions for Using Bison” are included exactly as in the original,
and provided that the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that the sections entitled
“GNU General Public License”, “Conditions for Using Bison” and this permission notice
may be included in translations approved by the Free Software Foundation instead of in the
original English.

Cover art by Etienne Suvasa.



Introduction 1

Introduction

Bison is a general-purpose parser generator that converts a grammar description for an
LALR(1) context-free grammar into a C program to parse that grammar. Once you are
proficient with Bison, you may use it to develop a wide range of language parsers, from
those used in simple desk calculators to complex programming languages.

Bison is upward compatible with Yacc: all properly-written Yacc grammars ought to
work with Bison with no change. Anyone familiar with Yacc should be able to use Bison
with little trouble. You need to be fluent in C programming in order to use Bison or to
understand this manual.

We begin with tutorial chapters that explain the basic concepts of using Bison and show
three explained examples, each building on the last. If you don’t know Bison or Yacc,
start by reading these chapters. Reference chapters follow which describe specific aspects
of Bison in detail.

Bison was written primarily by Robert Corbett; Richard Stallman made it Yacc-
compatible. Wilfred Hansen of Carnegie Mellon University added multicharacter string
literals and other features.

This edition corresponds to version 1.25 of Bison.



Bison 1.25



Conditions for Using Bison 3

Conditions for Using Bison

As of Bison version 1.24, we have changed the distribution terms for yyparse to permit
using Bison’s output in non-free programs. Formerly, Bison parsers could be used only in
programs that were free software.

The other GNU programming tools, such as the GNU C compiler, have never had such
a requirement. They could always be used for non-free software. The reason Bison was
different was not due to a special policy decision; it resulted from applying the usual General
Public License to all of the Bison source code.

The output of the Bison utility—the Bison parser file—contains a verbatim copy of a
sizable piece of Bison, which is the code for the yyparse function. (The actions from your
grammar are inserted into this function at one point, but the rest of the function is not
changed.) When we applied the GPL terms to the code for yyparse, the effect was to
restrict the use of Bison output to free software.

We didn’t change the terms because of sympathy for people who want to make software
proprietary. Software should be free. But we concluded that limiting Bison’s use to free
software was doing little to encourage people to make other software free. So we decided to
make the practical conditions for using Bison match the practical conditions for using the
other GNU tools.



Bison 1.25



GNU GENERAL PUBLIC LICENSE 5

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright © 1989, 1991 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee your
freedom to share and change free software—to make sure the software is free for all its users.
This General Public License applies to most of the Free Software Foundation’s software
and to any other program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.



6 Bison 1.25

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program”, below, refers to any such program or work, and a
“work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions



GNU GENERAL PUBLIC LICENSE 7

for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following;:

a. Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute cor-
responding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifi-
cations to it. For an executable work, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a spe-
cial exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,



Bison 1.25

by modifying or distributing the Program (or any work based on the Program), you
indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties to this License.

. If; as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
vou could satisfy both it and this License would be to refrain entirely from distribution
of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify a



GNU GENERAL PUBLIC LICENSE 9

10.

11.

12.

version number of this License, you may choose any version ever published by the Free
Software Foundation.

If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK ASTO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS



10 Bison 1.25

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone can
redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:
Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show ¢’ for details.

The hypothetical commands ‘show w” and ‘show ¢’ should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something
other than ‘show w’ and ‘show ¢’; they could even be mouse-clicks or menu items—whatever
suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit



GNU GENERAL PUBLIC LICENSE 11

linking proprietary applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.



12

Bison 1.25



Chapter 1: The Concepts of Bison 13

1 The Concepts of Bison

This chapter introduces many of the basic concepts without which the details of Bison
will not make sense. If you do not already know how to use Bison or Yacc, we suggest you
start by reading this chapter carefully.

1.1 Languages and Context-Free Grammars

In order for Bison to parse a language, it must be described by a context-free grammar.
This means that you specify one or more syntactic groupings and give rules for constructing
them from their parts. For example, in the C language, one kind of grouping is called an
‘expression’. One rule for making an expression might be, “An expression can be made of a
minus sign and another expression”. Another would be, “An expression can be an integer”.
As you can see, rules are often recursive, but there must be at least one rule which leads
out of the recursion.

The most common formal system for presenting such rules for humans to read is Backus-
Naur Form or “BNF”, which was developed in order to specify the language Algol 60. Any
grammar expressed in BNF is a context-free grammar. The input to Bison is essentially
machine-readable BNF.

Not all context-free languages can be handled by Bison, only those that are LALR(1).
In brief, this means that it must be possible to tell how to parse any portion of an input
string with just a single token of look-ahead. Strictly speaking, that is a description of
an LR(1) grammar, and LALR(1) involves additional restrictions that are hard to explain
simply; but it is rare in actual practice to find an LR(1) grammar that fails to be LALR(1).
See Section 5.7 [Mysterious Reduce/Reduce Conflicts], page 64, for more information on
this.

In the formal grammatical rules for a language, each kind of syntactic unit or grouping
is named by a symbol. Those which are built by grouping smaller constructs according
to grammatical rules are called nonterminal symbols; those which can’t be subdivided
are called terminal symbols or token types. We call a piece of input corresponding to a
single terminal symbol a token, and a piece corresponding to a single nonterminal symbol
a grouping.

We can use the C language as an example of what symbols, terminal and nonterminal,
mean. The tokens of C are identifiers, constants (numeric and string), and the various key-
words, arithmetic operators and punctuation marks. So the terminal symbols of a grammar
for C include ‘identifier’, ‘number’, ‘string’, plus one symbol for each keyword, operator
or punctuation mark: “f’, ‘return’, ‘const’, ‘static’, ‘int’, ‘char’, ‘plus-sign’, ‘open-brace’,
‘close-brace’, ‘comma’ and many more. (These tokens can be subdivided into characters,
but that is a matter of lexicography, not grammar.)

Here is a simple C function subdivided into tokens:

int /* keyword ‘int’ */
square (x) /* identifier, open-paren, */
/* identifier, close-paren */
int x; /* keyword ‘int’, identifier, semicolon */

{ /* open-brace */



14 Bison 1.25

return x * x; /* keyword ‘return’, identifier, */
/* asterisk, identifier, semicolon */
¥ /* close-brace */

The syntactic groupings of C include the expression, the statement, the declaration,
and the function definition. These are represented in the grammar of C by nonterminal
symbols ‘expression’, ‘statement’, ‘declaration’ and ‘function definition’. The full grammar
uses dozens of additional language constructs, each with its own nonterminal symbol, in
order to express the meanings of these four. The example above is a function definition;
it contains one declaration, and one statement. In the statement, each ‘x’ is an expression
and so is ‘x * x’.

Each nonterminal symbol must have grammatical rules showing how it is made out of
simpler constructs. For example, one kind of C statement is the return statement; this
would be described with a grammar rule which reads informally as follows:

A ‘statement’ can be made of a ‘return’ keyword, an ‘expression’ and a ‘semi-
colon’.

There would be many other rules for ‘statement’, one for each kind of statement in C.

One nonterminal symbol must be distinguished as the special one which defines a com-
plete utterance in the language. It is called the start symbol. In a compiler, this means a
complete input program. In the C language, the nonterminal symbol ‘sequence of definitions
and declarations’ plays this role.

For example, ‘1 + 2’ is a valid C expression—a valid part of a C program—but it is not
valid as an entire C program. In the context-free grammar of C, this follows from the fact
that ‘expression’ is not the start symbol.

The Bison parser reads a sequence of tokens as its input, and groups the tokens using the
grammar rules. If the input is valid, the end result is that the entire token sequence reduces
to a single grouping whose symbol is the grammar’s start symbol. If we use a grammar for
C, the entire input must be a ‘sequence of definitions and declarations’. If not, the parser
reports a syntax error.

1.2 From Formal Rules to Bison Input

A formal grammar is a mathematical construct. To define the language for Bison, you
must write a file expressing the grammar in Bison syntax: a Bison grammar file. See
Chapter 3 [Bison Grammar Files], page 35.

A nonterminal symbol in the formal grammar is represented in Bison input as an iden-
tifier, like an identifier in C. By convention, it should be in lower case, such as expr, stmt
or declaration.

The Bison representation for a terminal symbol is also called a token type. Token types
as well can be represented as C-like identifiers. By convention, these identifiers should be
upper case to distinguish them from nonterminals: for example, INTEGER, IDENTIFIER,
IF or RETURN. A terminal symbol that stands for a particular keyword in the language
should be named after that keyword converted to upper case. The terminal symbol error
is reserved for error recovery. See Section 3.2 [Symbols], page 36.



Chapter 1: The Concepts of Bison 15

A terminal symbol can also be represented as a character literal, just like a C character
constant. You should do this whenever a token is just a single character (parenthesis,
plus-sign, etc.): use that same character in a literal as the terminal symbol for that token.

A third way to represent a terminal symbol is with a C string constant containing several
characters. See Section 3.2 [Symbols], page 36, for more information.

The grammar rules also have an expression in Bison syntax. For example, here is the
Bison rule for a C return statement. The semicolon in quotes is a literal character token,
representing part of the C syntax for the statement; the naked semicolon, and the colon,
are Bison punctuation used in every rule.

stmt: RETURN expr ’;°

See Section 3.3 [Syntax of Grammar Rules], page 37.

1.3 Semantic Values

A formal grammar selects tokens only by their classifications: for example, if a rule
mentions the terminal symbol ‘integer constant’, it means that any integer constant is
grammatically valid in that position. The precise value of the constant is irrelevant to how
to parse the input: if ‘x+4’ is grammatical then ‘x+1’ or ‘x+3989’ is equally grammatical.

But the precise value is very important for what the input means once it is parsed.
A compiler is useless if it fails to distinguish between 4, 1 and 3989 as constants in the
program! Therefore, each token in a Bison grammar has both a token type and a semantic
value. See Section 3.5 [Defining Language Semantics], page 39, for details.

The token type is a terminal symbol defined in the grammar, such as INTEGER,
IDENTIFIER or ’,’. It tells everything you need to know to decide where the token
may validly appear and how to group it with other tokens. The grammar rules know
nothing about tokens except their types.

The semantic value has all the rest of the information about the meaning of the token,
such as the value of an integer, or the name of an identifier. (A token such as *,’ which is
just punctuation doesn’t need to have any semantic value.)

For example, an input token might be classified as token type INTEGER and have the
semantic value 4. Another input token might have the same token type INTEGER but
value 3989. When a grammar rule says that INTEGER is allowed, either of these tokens is
acceptable because each is an INTEGER. When the parser accepts the token, it keeps track
of the token’s semantic value.

Each grouping can also have a semantic value as well as its nonterminal symbol. For
example, in a calculator, an expression typically has a semantic value that is a number. In
a compiler for a programming language, an expression typically has a semantic value that
is a tree structure describing the meaning of the expression.

1.4 Semantic Actions

In order to be useful, a program must do more than parse input; it must also produce
some output based on the input. In a Bison grammar, a grammar rule can have an action



16 Bison 1.25

made up of C statements. Each time the parser recognizes a match for that rule, the action
is executed. See Section 3.5.3 [Actions], page 40.

Most of the time, the purpose of an action is to compute the semantic value of the whole
construct from the semantic values of its parts. For example, suppose we have a rule which
says an expression can be the sum of two expressions. When the parser recognizes such a
sum, each of the subexpressions has a semantic value which describes how it was built up.
The action for this rule should create a similar sort of value for the newly recognized larger
expression.

For example, here is a rule that says an expression can be the sum of two subexpressions:

expr: expr ’+’ expr { $$ = $1 + $3; }

s

The action says how to produce the semantic value of the sum expression from the values
of the two subexpressions.

1.5 Bison Output: the Parser File

When you run Bison, you give it a Bison grammar file as input. The output is a C
source file that parses the language described by the grammar. This file is called a Bison
parser. Keep in mind that the Bison utility and the Bison parser are two distinct programs:
the Bison utility is a program whose output is the Bison parser that becomes part of your
program.

The job of the Bison parser is to group tokens into groupings according to the grammar
rules—for example, to build identifiers and operators into expressions. As it does this, it
runs the actions for the grammar rules it uses.

The tokens come from a function called the lexical analyzer that you must supply in some
fashion (such as by writing it in C). The Bison parser calls the lexical analyzer each time it
wants a new token. It doesn’t know what is “inside” the tokens (though their semantic values
may reflect this). Typically the lexical analyzer makes the tokens by parsing characters of
text, but Bison does not depend on this. See Section 4.2 [The Lexical Analyzer Function
yylex], page 49.

The Bison parser file is C code which defines a function named yyparse which implements
that grammar. This function does not make a complete C program: you must supply some
additional functions. One is the lexical analyzer. Another is an error-reporting function
which the parser calls to report an error. In addition, a complete C program must start
with a function called main; you have to provide this, and arrange for it to call yyparse or
the parser will never run. See Chapter 4 [Parser C-Language Interface], page 49.

Aside from the token type names and the symbols in the actions you write, all variable
and function names used in the Bison parser file begin with ‘yy’ or ‘YY’. This includes
interface functions such as the lexical analyzer function yylex, the error reporting function
yyerror and the parser function yyparse itself. This also includes numerous identifiers
used for internal purposes. Therefore, you should avoid using C identifiers starting with
‘yy’ or ‘YY’ in the Bison grammar file except for the ones defined in this manual.



Chapter 1: The Concepts of Bison 17

1.6 Stages in Using Bison

The actual language-design process using Bison, from grammar specification to a working
compiler or interpreter, has these parts:

1. Formally specify the grammar in a form recognized by Bison (see Chapter 3 [Bison
Grammar Files], page 35). For each grammatical rule in the language, describe the
action that is to be taken when an instance of that rule is recognized. The action is
described by a sequence of C statements.

2. Write a lexical analyzer to process input and pass tokens to the parser. The lexical
analyzer may be written by hand in C (see Section 4.2 [The Lexical Analyzer Function
yylex], page 49). It could also be produced using Lex, but the use of Lex is not
discussed in this manual.

3. Write a controlling function that calls the Bison-produced parser.

4. Write error-reporting routines.

To turn this source code as written into a runnable program, you must follow these steps:
1. Run Bison on the grammar to produce the parser.
2. Compile the code output by Bison, as well as any other source files.

3. Link the object files to produce the finished product.

1.7 The Overall Layout of a Bison Grammar

The input file for the Bison utility is a Bison grammar file. The general form of a Bison
grammar file is as follows:

Al

C declarations

hY

Bison declarations

hh

Grammar rules

hh

Additional C code
The ‘%%, ‘%{" and ‘%}’ are punctuation that appears in every Bison grammar file to separate
the sections.

The C declarations may define types and variables used in the actions. You can also use
preprocessor commands to define macros used there, and use #include to include header
files that do any of these things.

The Bison declarations declare the names of the terminal and nonterminal symbols, and
may also describe operator precedence and the data types of semantic values of various
symbols.

The grammar rules define how to construct each nonterminal symbol from its parts.



18 Bison 1.25

The additional C code can contain any C code you want to use. Often the definition of
the lexical analyzer yylex goes here, plus subroutines called by the actions in the grammar
rules. In a simple program, all the rest of the program can go here.



Chapter 2: Examples 19

2 Examples

Now we show and explain three sample programs written using Bison: a reverse polish
notation calculator, an algebraic (infix) notation calculator, and a multi-function calculator.
All three have been tested under BSD Unix 4.3; each produces a usable, though limited,
interactive desk-top calculator.

These examples are simple, but Bison grammars for real programming languages are
written the same way.

2.1 Reverse Polish Notation Calculator

The first example is that of a simple double-precision reverse polish notation calcula-
tor (a calculator using postfix operators). This example provides a good starting point,
since operator precedence is not an issue. The second example will illustrate how operator
precedence is handled.

[4

The source code for this calculator is named ‘rpcalc.y’. The ‘.y’ extension is a con-

vention used for Bison input files.

2.1.1 Declarations for rpcalc

Here are the C and Bison declarations for the reverse polish notation calculator. As in
C, comments are placed between ‘/*...%/’.

/* Reverse polish notation calculator. */

W
#tdefine YYSTYPE double
#include <math.h>

Ay
%token NUM

%% /* Grammar rules and actions follow */

The C declarations section (see Section 3.1.1 [The C Declarations Section], page 35)
contains two preprocessor directives.

The #define directive defines the macro YYSTYPE, thus specifying the C data type for
semantic values of both tokens and groupings (see Section 3.5.1 [Data Types of Semantic
Values], page 39). The Bison parser will use whatever type YYSTYPE is defined as; if you don’t
define it, int is the default. Because we specify double, each token and each expression
has an associated value, which is a floating point number.

The #include directive is used to declare the exponentiation function pow.

The second section, Bison declarations, provides information to Bison about the token
types (see Section 3.1.2 [The Bison Declarations Section], page 35). Each terminal sym-
bol that is not a single-character literal must be declared here. (Single-character literals
normally don’t need to be declared.) In this example, all the arithmetic operators are des-
ignated by single-character literals, so the only terminal symbol that needs to be declared
is NUM, the token type for numeric constants.



20 Bison 1.25

2.1.2 Grammar Rules for rpcalc

Here are the grammar rules for the reverse polish notation calculator.
input: /* empty */
| input line

line: ’\n’
| exp ’\n’ { printf ("\t}.10g\n", $1); }

exp: NUM { $$ = $1; }
| exp exp ’+’ { 8% = $1 + $2; b
| exp exp ’-’ { $$ = $1 - $2; b
| exp exp ’*’ { 8% = $1 = $2; b
| exp exp ’/° { %% = %1/ $2; ¥
/* Exponentiation */
| exp exp °7° { $$ = pow ($1, $2); }
/* Unary minus */
| exp ’n’ { $$ = -$1; b
hh

The groupings of the rpcalc “language” defined here are the expression (given the name
exp), the line of input (line), and the complete input transcript (input). Each of these
nonterminal symbols has several alternate rules, joined by the ‘|’ punctuator which is read
as “or”. The following sections explain what these rules mean.

The semantics of the language is determined by the actions taken when a grouping
is recognized. The actions are the C code that appears inside braces. See Section 3.5.3
[Actions], page 40.

You must specify these actions in C, but Bison provides the means for passing semantic
values between the rules. In each action, the pseudo-variable $$ stands for the semantic
value for the grouping that the rule is going to construct. Assigning a value to $$ is the
main job of most actions. The semantic values of the components of the rule are referred
to as $1, $2, and so on.

2.1.2.1 Explanation of input

Consider the definition of input:
input: /* empty */
| input line
This definition reads as follows: “A complete input is either an empty string, or a
complete input followed by an input line”. Notice that “complete input” is defined in terms
of itself. This definition is said to be left recursive since input appears always as the
leftmost symbol in the sequence. See Section 3.4 [Recursive Rules], page 38.

The first alternative is empty because there are no symbols between the colon and the
first |’; this means that input can match an empty string of input (no tokens). We write



Chapter 2: Examples 21

the rules this way because it is legitimate to type Ctrl-d right after you start the calculator.
It’s conventional to put an empty alternative first and write the comment ‘/* empty */’ in
it.

The second alternate rule (input line) handles all nontrivial input. It means, “After
reading any number of lines, read one more line if possible.” The left recursion makes this
rule into a loop. Since the first alternative matches empty input, the loop can be executed
zero or more times.

The parser function yyparse continues to process input until a grammatical error is seen
or the lexical analyzer says there are no more input tokens; we will arrange for the latter
to happen at end of file.

2.1.2.2 Explanation of line

Now consider the definition of line:
line: ’\n’
| exp ’\n’ { printf ("\t}.10g\n", $1); }

The first alternative is a token which is a newline character; this means that rpcalc
accepts a blank line (and ignores it, since there is no action). The second alternative is
an expression followed by a newline. This is the alternative that makes rpcalc useful. The
semantic value of the exp grouping is the value of $1 because the exp in question is the
first symbol in the alternative. The action prints this value, which is the result of the
computation the user asked for.

This action is unusual because it does not assign a value to $$. As a consequence, the
semantic value associated with the line is uninitialized (its value will be unpredictable).
This would be a bug if that value were ever used, but we don’t use it: once rpcalc has
printed the value of the user’s input line, that value is no longer needed.

2.1.2.3 Explanation of expr

The exp grouping has several rules, one for each kind of expression. The first rule
handles the simplest expressions: those that are just numbers. The second handles an
addition-expression, which looks like two expressions followed by a plus-sign. The third
handles subtraction, and so on.

exp: NUM
| exp exp ’+’ { 8% = $1 + $2; b
| exp exp ’-’ { %% = $1 - $2; ¥
We have used ‘I’ to join all the rules for exp, but we could equally well have written
them separately:
exp: NUM ;
exp: exp exp ’+’ { 8% = $1 + $2; s

exp: exp exp ’-’ { $$ = $1 - $2; s



22 Bison 1.25

Most of the rules have actions that compute the value of the expression in terms of the
value of its parts. For example, in the rule for addition, $1 refers to the first component exp
and $2 refers to the second one. The third component, >+, has no meaningful associated
semantic value, but if it had one you could refer to it as $3. When yyparse recognizes a
sum expression using this rule, the sum of the two subexpressions’ values is produced as
the value of the entire expression. See Section 3.5.3 [Actions], page 40.

You don’t have to give an action for every rule. When a rule has no action, Bison by
default copies the value of $1 into $$. This is what happens in the first rule (the one that
uses NUM).

The formatting shown here is the recommended convention, but Bison does not require
it. You can add or change whitespace as much as you wish. For example, this:

exp : NUM | exp exp ’+’ {$$ = $1 + $2; } |
means the same thing as this
exp: NUM
| exp exp ’+’ {88 =981+ 82; }

The latter, however, is much more readable.

2.1.3 The rpcalc Lexical Analyzer

The lexical analyzer’s job is low-level parsing: converting characters or sequences of
characters into tokens. The Bison parser gets its tokens by calling the lexical analyzer. See
Section 4.2 [The Lexical Analyzer Function yylex], page 49.

Only a simple lexical analyzer is needed for the RPN calculator. This lexical analyzer
skips blanks and tabs, then reads in numbers as double and returns them as NUM tokens.
Any other character that isn’t part of a number is a separate token. Note that the token-
code for such a single-character token is the character itself.

The return value of the lexical analyzer function is a numeric code which represents a
token type. The same text used in Bison rules to stand for this token type is also a C
expression for the numeric code for the type. This works in two ways. If the token type
is a character literal, then its numeric code is the ASCII code for that character; you can
use the same character literal in the lexical analyzer to express the number. If the token
type is an identifier, that identifier is defined by Bison as a C macro whose definition is the
appropriate number. In this example, therefore, NUM becomes a macro for yylex to use.

The semantic value of the token (if it has one) is stored into the global variable yylval,
which is where the Bison parser will look for it. (The C data type of yylval is YYSTYPE,
which was defined at the beginning of the grammar; see Section 2.1.1 [Declarations for
rpcalc], page 19.)

A token type code of zero is returned if the end-of-file is encountered. (Bison recognizes
any nonpositive value as indicating the end of the input.)

Here is the code for the lexical analyzer:



Chapter 2: Examples 23

/* Lexical analyzer returns a double floating point
number on the stack and the token NUM, or the ASCII
character read if not a number. Skips all blanks
and tabs, returns O for EOF. x/

#include <ctype.h>

yylex O
{

int c;

/* skip white space */
while ((c = getchar ()) == > || ¢ == ’\t?)
/* process numbers  */
if (¢ == 7.7 || isdigit (<))
{
ungetc (c, stdin);
scanf ("}1f", &yylval);
return NUM;
}
/* return end-of-file =*/
if (¢ == EOF)
return O;
/* return single chars */
return c;

2.1.4 The Controlling Function

In keeping with the spirit of this example, the controlling function is kept to the bare
minimum. The only requirement is that it call yyparse to start the process of parsing.

main ()
{

yyparse ();
}

2.1.5 The Error Reporting Routine

When yyparse detects a syntax error, it calls the error reporting function yyerror to
print an error message (usually but not always "parse error"). It is up to the programmer
to supply yyerror (see Chapter 4 [Parser C-Language Interface], page 49), so here is the
definition we will use:



24 Bison 1.25

#include <stdio.h>

yyerror (s) /* Called by yyparse on error */
char *s;
{
printf ("%s\n", s);
}

After yyerror returns, the Bison parser may recover from the error and continue parsing
if the grammar contains a suitable error rule (see Chapter 6 [Error Recovery], page 67).
Otherwise, yyparse returns nonzero. We have not written any error rules in this example,
so any invalid input will cause the calculator program to exit. This is not clean behavior
for a real calculator, but it is adequate in the first example.

2.1.6 Running Bison to Make the Parser

Before running Bison to produce a parser, we need to decide how to arrange all the
source code in one or more source files. For such a simple example, the easiest thing is to
put everything in one file. The definitions of yylex, yyerror and main go at the end, in
the “additional C code” section of the file (see Section 1.7 [The Overall Layout of a Bison
Grammar], page 17).

For a large project, you would probably have several source files, and use make to arrange
to recompile them.

With all the source in a single file, you use the following command to convert it into a
parser file:

bison file_name.y

In this example the file was called ‘rpcalc.y’ (for “Reverse Polish CALCulator”). Bison
produces a file named ‘file_name.tab.c’, removing the .y’ from the original file name. The
file output by Bison contains the source code for yyparse. The additional functions in the
input file (yylex, yyerror and main) are copied verbatim to the output.

2.1.7 Compiling the Parser File

Here is how to compile and run the parser file:

# List files in current directory.
h 1s
rpcalc.tab.c rpcalc.y

# Compile the Bison parser.
# ‘-1m’ tells compiler to search math library for pow.
% cc rpcalc.tab.c -1lm -o rpcalc

# List files again.
h 1s
rpcalc rpcalc.tab.c rpcalc.y

The file ‘rpcalc’ now contains the executable code. Here is an example session using
rpcalc.



Chapter 2: Examples

% rpcalc

4 9 +

13

37+ 345 *x+-

-13

37+345 %+ -n
13

56/ 4n+
-3.166666667

34-° Exponentiation

81

) End-of-file indicator

[/

2.2 Infix Notation Calculator: calc

Note the unary minus, ‘n’

25

We now modify rpcalc to handle infix operators instead of postfix. Infix notation involves
the concept of operator precedence and the need for parentheses nested to arbitrary depth.
Here is the Bison code for ‘calc.y’, an infix desk-top calculator.

/* Infix notation calculator--calc */

W
#tdefine YYSTYPE double
#include <math.h>

hY

/* BISON Declarations */

htoken NUM

%left 1o 40

%left 2k )/)

hleft NEG /* negation--unary minus */
hright >~ /* exponentiation */

/* Grammar follows */

e e

hh
input: /* empty string */
| input line
line: ’\n’
| exp ’\n’ { printf ("\t).10g\n", $1);
exp: NUM { 8% = $1;
| exp ’+’ exp { 8% = $1 + $3;
| exp ’-’ exp {8 = %1 - $3;
| exp ’#’ exp { 8% = $1 = $3;
| exp ’/’ exp {8 =81/ 83;



26 Bison 1.25

| -7 exp ‘prec NEG { $$ = -$2; }
| exp >°7 exp { $$ = pow ($1, $3); }
| >C exp ’)° { $$ = $2; ¥

hh
The functions yylex, yyerror and main can be the same as before.
There are two important new features shown in this code.

In the second section (Bison declarations), %left declares token types and says they are
left-associative operators. The declarations %left and %right (right associativity) take the
place of Ytoken which is used to declare a token type name without associativity. (These
tokens are single-character literals, which ordinarily don’t need to be declared. We declare
them here to specify the associativity.)

Operator precedence is determined by the line ordering of the declarations; the higher
the line number of the declaration (lower on the page or screen), the higher the precedence.
Hence, exponentiation has the highest precedence, unary minus (NEG) is next, followed by
‘“*” and ‘/’, and so on. See Section 5.3 [Operator Precedence], page 59.

The other important new feature is the %prec in the grammar section for the unary
minus operator. The jprec simply instructs Bison that the rule ‘| =’ exp’ has the same
precedence as NEG—in this case the next-to-highest. See Section 5.4 [Context-Dependent
Precedence], page 61.

Here is a sample run of ‘calc.y’:
h calc
4 + 4.5 - (34/(8%3+-3))
6.880952381
-56 + 2
-54
37 2
9

2.3 Simple Error Recovery

Up to this point, this manual has not addressed the issue of error recovery—how to
continue parsing after the parser detects a syntax error. All we have handled is error
reporting with yyerror. Recall that by default yyparse returns after calling yyerror.
This means that an erroneous input line causes the calculator program to exit. Now we
show how to rectify this deficiency.

The Bison language itself includes the reserved word error, which may be included in
the grammar rules. In the example below it has been added to one of the alternatives for
line:

line: ’\n’
| exp ’\n’ { printf (“\t}.10g\n", $1);
| error ’\n’ { yyerrok; }

This addition to the grammar allows for simple error recovery in the event of a parse
error. If an expression that cannot be evaluated is read, the error will be recognized by the



Chapter 2: Examples 27

third rule for line, and parsing will continue. (The yyerror function is still called upon
to print its message as well.) The action executes the statement yyerrok, a macro defined
automatically by Bison; its meaning is that error recovery is complete (see Chapter 6 [Error
Recovery], page 67). Note the difference between yyerrok and yyerror; neither one is a
misprint.

This form of error recovery deals with syntax errors. There are other kinds of errors; for
example, division by zero, which raises an exception signal that is normally fatal. A real
calculator program must handle this signal and use longjmp to return to main and resume
parsing input lines; it would also have to discard the rest of the current line of input. We
won’t discuss this issue further because it is not specific to Bison programs.

2.4 Multi-Function Calculator: mfcalc

Now that the basics of Bison have been discussed, it is time to move on to a more
advanced problem. The above calculators provided only five functions, ‘+°, *=’, “*’, ¢/” and
‘=7, It would be nice to have a calculator that provides other mathematical functions such
as sin, cos, etc.

It is easy to add new operators to the infix calculator as long as they are only single-
character literals. The lexical analyzer yylex passes back all non-number characters as
tokens, so new grammar rules suffice for adding a new operator. But we want something
more flexible: built-in functions whose syntax has this form:

function_name (argument)

At the same time, we will add memory to the calculator, by allowing you to create named
variables, store values in them, and use them later. Here is a sample session with the
multi-function calculator:

% mfcalc

pi = 3.141592653589
3.1415926536
sin(pi)
0.0000000000

alpha = betal = 2.3
2.3000000000

alpha

2.3000000000
1n(alpha)
0.8329091229
exp(ln(betal))
2.3000000000

h

Note that multiple assignment and nested function calls are permitted.

2.4.1 Declarations for mfcalc

Here are the C and Bison declarations for the multi-function calculator.

Al

#include <math.h> /* For math functions, cos(), sin(), etc. */



28 Bison 1.25

#include '"calc.h" /* Contains definition of ‘symrec’ */
hY

hunion {

double val; /* For returning numbers. */
symrec *tptr; /* For returning symbol-table pointers */
}

htoken <val> NUM /* Simple double precision number  */
htoken <tptr> VAR FNCT /#* Variable and Function */

htype <val> exp

hright ’=’

Yleft >=2 247

%left 2k )/)

hleft NEG /* Negation--unary minus */
hright >~ /* Exponentiation */

/* Grammar follows */

hh
The above grammar introduces only two new features of the Bison language. These
features allow semantic values to have various data types (see Section 3.5.2 [More Than
One Value Type], page 39).

The %union declaration specifies the entire list of possible types; this is instead of defining
YYSTYPE. The allowable types are now double-floats (for exp and NUM) and pointers to entries
in the symbol table. See Section 3.6.3 [The Collection of Value Types], page 45.

Since values can now have various types, it is necessary to associate a type with each
grammar symbol whose semantic value is used. These symbols are NUM, VAR, FNCT, and exp.
Their declarations are augmented with information about their data type (placed between
angle brackets).

The Bison construct %type is used for declaring nonterminal symbols, just as %token
is used for declaring token types. We have not used %type before because nonterminal
symbols are normally declared implicitly by the rules that define them. But exp must be
declared explicitly so we can specify its value type. See Section 3.6.4 [Nonterminal Symbols],
page 45.

2.4.2 Grammar Rules for mfcalc

Here are the grammar rules for the multi-function calculator. Most of them are copied
directly from calc; three rules, those which mention VAR or FNCT, are new.
input: /* empty */
| input line

line:
)\n)
| exp ’\n’ { printf ("\t}.10g\n", $1);



Chapter 2: Examples 29

error ’\n’ { yyerrok; ¥
exp: NUM { 8% = $1; +
| VAR { $$ = $1->value.var; }
| VAR ’=’ exp { $$ = $3; $1->value.var = $3; }
| FNCT > (’ exp ’)’ { $$ = (x($1->value.fnctptr))($3); }
| exp ’+’ exp { 8% = $1 + $3; +
| exp ’-’ exp {8 = %1 - $3; +
| exp ’#’ exp { 8% = $1 = $3; +
| exp ’/’ exp {8 =81/ 83; +
| -’ exp Y%prec NEG { $$ = -$2; ¥
| exp ’~? exp { $% = pow ($1, $3); b
| > exp ?)’ { $$ = $2; +

/* End of grammar */

W
2.4.3 The mfcalc Symbol Table

The multi-function calculator requires a symbol table to keep track of the names and
meanings of variables and functions. This doesn’t affect the grammar rules (except for the
actions) or the Bison declarations, but it requires some additional C functions for support.

The symbol table itself consists of a linked list of records. Its definition, which is kept in
the header ‘calc.h’, is as follows. It provides for either functions or variables to be placed
in the table.

/* Data type for links in the chain of symbols. */
struct symrec
{
char *name; /* name of symbol */
int type; /* type of symbol: either VAR or FNCT */
union {
double var; /* value of a VAR */
double (*fnctptr)(); /* value of a FNCT */
} value;
struct symrec *next; /* link field */
3

typedef struct symrec symrec;

/* The symbol table: a chain of ‘struct symrec’. */
extern symrec *sym_table;

symrec *putsym ();
symrec *getsym ();

The new version of main includes a call to init_table, a function that initializes the
symbol table. Here it is, and init_table as well:



30 Bison 1.25

#include <stdio.h>

main ()

{
init_table ();
yyparse ();

}

yyerror (s) /* Called by yyparse on error */
char *s;
{
printf ("%s\n", s);
}

struct init
{
char *fname;
double (*fnct)();
}s
struct init arith_fncts[]
={
"sin", sin,
"cos", cos,
"atan", atan,
“ln“, 1Og,
“exp“, exp,
"sqrt", sqrt,
0, 0
}s

/* The symbol table: a chain of ‘struct symrec’. */
symrec *sym_table = (symrec *)0;

init_table () /#* puts arithmetic functions in table. */
{
int i;
symrec *ptr;
for (i = 0; arith_fncts[i].fname !'= 0; i++)
{
ptr = putsym (arith_fncts[i].fname, FNCT);
ptr->value.fnctptr = arith_fncts[i].fnct;
}
}

By simply editing the initialization list and adding the necessary include files, you can
add additional functions to the calculator.

Two important functions allow look-up and installation of symbols in the symbol table.
The function putsym is passed a name and the type (VAR or FNCT) of the object to be
installed. The object is linked to the front of the list, and a pointer to the object is



Chapter 2: Examples 31

returned. The function getsym is passed the name of the symbol to look up. If found, a
pointer to that symbol is returned; otherwise zero is returned.

symrec *
putsym (sym_name,sym_type)

}

char *sym_name;
int sym_type;

symrec *ptr;

ptr = (symrec *) malloc (sizeof (symrec));

ptr->name = (char *) malloc (strlen (sym_name) + 1);
strcpy (ptr->name,sym_name);

ptr->type = sym_type;

ptr->value.var = 0; /* set value to O even if fctn. */
ptr->next = (struct symrec *)sym_table;

sym_table = ptr;

return ptr;

symrec *
getsym (sym_name)

{

}

The

char *sym_name;

symrec *ptr;
for (ptr = sym_table; ptr '= (symrec *) 0;

ptr = (symrec *)ptr->next)
if (strcmp (ptr->name,sym_name) == 0)
return ptr;
return O;

function yylex must now recognize variables, numeric values, and the single-

character arithmetic operators. Strings of alphanumeric characters with a leading nondigit
are recognized as either variables or functions depending on what the symbol table says
about them.

The string is passed to getsym for look up in the symbol table. If the name appears in
the table, a pointer to its location and its type (VAR or FNCT) is returned to yyparse. If it
is not already in the table, then it is installed as a VAR using putsym. Again, a pointer and
its type (which must be VAR) is returned to yyparse.

No change is needed in the handling of numeric values and arithmetic operators in yylex.



Bison 1.25

#include <ctype.h>
yylex O
{

int c;

/* Ignore whitespace, get first nonwhite character. */
while ((c = getchar ()) ==’ 7 || ¢ == ’\t’);

if (¢ == EOF)

return O;
/* Char starts a number => parse the number. */
if (¢ == 7.7 || isdigit (<))

{

ungetc (c, stdin);
scanf ("}1f", &yylval.val);
return NUM;

}

/* Char starts an identifier => read the name. */
if (isalpha (c))
{
Symrec *s;
static char *symbuf
static int length =
int i;

=O;
03

/* Initially make the buffer long enough
for a 40-character symbol name. */
if (length == 0)
length = 40, symbuf = (char *)malloc (length + 1);

i= 0;
do
{
/* If buffer is full, make it bigger. */
if (i == length)
{
length *= 2;
symbuf = (char *)realloc (symbuf, length + 1);
}
/* Add this character to the buffer. */
symbuf [i++] = c;
/* Get another character. */

c = getchar ();

T
while (¢ '= EOF && isalnum (c));

ungetc (c, stdin);
symbuf [i] = ’\0’;



Chapter 2: Examples 33

s = getsym (symbuf) ;
if (s == 0)
s = putsym (symbuf, VAR);
yylval.tptr = s;
return s->type;

}

/* Any other character is a token by itself. */
return c;

}

This program is both powerful and flexible. You may easily add new functions, and it
is a simple job to modify this code to install predefined variables such as pi or e as well.

2.5 Exercises

1. Add some new functions from ‘math.h’ to the initialization list.

2. Add another array that contains constants and their values. Then modify init_table
to add these constants to the symbol table. It will be easiest to give the constants type
VAR.

3. Make the program report an error if the user refers to an uninitialized variable in any
way except to store a value in it.



34

Bison 1.25



Chapter 3: Bison Grammar Files 35

3 Bison Grammar Files

Bison takes as input a context-free grammar specification and produces a C-language
function that recognizes correct instances of the grammar.

The Bison grammar input file conventionally has a name ending in ‘.y’.

3.1 Outline of a Bison Grammar

A Bison grammar file has four main sections, shown here with the appropriate delimiters:

Al

C declarations

hY

Bison declarations

Wk

Grammar rules

Wk

Additional C code

Comments enclosed in ‘/* ... */’ may appear in any of the sections.

3.1.1 The C Declarations Section

The C declarations section contains macro definitions and declarations of functions and
variables that are used in the actions in the grammar rules. These are copied to the
beginning of the parser file so that they precede the definition of yyparse. You can use
‘#¢include’ to get the declarations from a header file. If you don’t need any C declarations,
you may omit the ‘4{” and ‘4}’ delimiters that bracket this section.

3.1.2 The Bison Declarations Section

The Bison declarations section contains declarations that define terminal and nontermi-
nal symbols, specify precedence, and so on. In some simple grammars you may not need
any declarations. See Section 3.6 [Bison Declarations], page 43.

3.1.3 The Grammar Rules Section

The grammar rules section contains one or more Bison grammar rules, and nothing else.
See Section 3.3 [Syntax of Grammar Rules], page 37.

There must always be at least one grammar rule, and the first ‘4%’ (which precedes the
grammar rules) may never be omitted even if it is the first thing in the file.



36 Bison 1.25

3.1.4 The Additional C Code Section

The additional C code section is copied verbatim to the end of the parser file, just as
the C declarations section is copied to the beginning. This is the most convenient place to
put anything that you want to have in the parser file but which need not come before the
definition of yyparse. For example, the definitions of yylex and yyerror often go here.
See Chapter 4 [Parser C-Language Interface], page 49.

If the last section is empty, you may omit the ‘4%’ that separates it from the grammar
rules.

The Bison parser itself contains many static variables whose names start with ‘yy’ and
many macros whose names start with ‘YY’. It is a good idea to avoid using any such names
(except those documented in this manual) in the additional C code section of the grammar

file.

3.2 Symbols, Terminal and Nonterminal

Symbols in Bison grammars represent the grammatical classifications of the language.

A terminal symbol (also known as a token type) represents a class of syntactically
equivalent tokens. You use the symbol in grammar rules to mean that a token in that class
is allowed. The symbol is represented in the Bison parser by a numeric code, and the yylex
function returns a token type code to indicate what kind of token has been read. You don’t
need to know what the code value is; you can use the symbol to stand for it.

A nonterminal symbol stands for a class of syntactically equivalent groupings. The
symbol name is used in writing grammar rules. By convention, it should be all lower case.

Symbol names can contain letters, digits (not at the beginning), underscores and periods.
Periods make sense only in nonterminals.

There are three ways of writing terminal symbols in the grammar:

o A named token type is written with an identifier, like an identifier in C. By convention,
it should be all upper case. Each such name must be defined with a Bison declaration
such as Jtoken. See Section 3.6.1 [Token Type Names], page 44.

e A character token type (or literal character token) is written in the grammar using
the same syntax used in C for character constants; for example, >+? is a character token
type. A character token type doesn’t need to be declared unless you need to specify its
semantic value data type (see Section 3.5.1 [Data Types of Semantic Values], page 39),
associativity, or precedence (see Section 5.3 [Operator Precedence], page 59).

By convention, a character token type is used only to represent a token that consists of
that particular character. Thus, the token type >+’ is used to represent the character
‘+’ ag a token. Nothing enforces this convention, but if you depart from it, your program
will confuse other readers.

All the usual escape sequences used in character literals in C can be used in Bison
as well, but you must not use the null character as a character literal because its
ASCII code, zero, is the code yylex returns for end-of-input (see Section 4.2.1 [Calling
Convention for yylex], page 49).



Chapter 3: Bison Grammar Files 37

° A literal string token is written like a C string constant; for example, "<=" is a
literal string token. A literal string token doesn’t need to be declared unless you
need to specify its semantic value data type (see Section 3.5.1 [Value Type], page 39),
associativity, precedence (see Section 5.3 [Precedence], page 59).

You can associate the literal string token with a symbolic name as an alias, using the
hitoken declaration (see Section 3.6.1 [Token Declarations], page 44). If you don’t do
that, the lexical analyzer has to retrieve the token number for the literal string token
from the yytname table (see Section 4.2.1 [Calling Convention], page 49).

WARNING: literal string tokens do not work in Yacc.

By convention, a literal string token is used only to represent a token that consists
of that particular string. Thus, you should use the token type "<=" to represent the
string ‘<= as a token. Bison does not enforces this convention, but if you depart from
it, people who read your program will be confused.

All the escape sequences used in string literals in C can be used in Bison as well. A
literal string token must contain two or more characters; for a token containing just
one character, use a character token (see above).

How you choose to write a terminal symbol has no effect on its grammatical meaning.
That depends only on where it appears in rules and on when the parser function returns
that symbol.

The value returned by yylex is always one of the terminal symbols (or 0 for end-of-
input). Whichever way you write the token type in the grammar rules, you write it the
same way in the definition of yylex. The numeric code for a character token type is simply
the ASCII code for the character, so yylex can use the identical character constant to
generate the requisite code. Each named token type becomes a C macro in the parser file,
so yylex can use the name to stand for the code. (This is why periods don’t make sense in
terminal symbols.) See Section 4.2.1 [Calling Convention for yylex], page 49.

If yylex is defined in a separate file, you need to arrange for the token-type macro
definitions to be available there. Use the ‘-d’ option when you run Bison, so that it will
write these macro definitions into a separate header file ‘name.tab.h’ which you can include
in the other source files that need it. See Chapter 9 [Invoking Bison], page 75.

The symbol error is a terminal symbol reserved for error recovery (see Chapter 6 [Error
Recovery], page 67); you shouldn’t use it for any other purpose. In particular, yylex should
never return this value.

3.3 Syntax of Grammar Rules

A Bison grammar rule has the following general form:
result: components. ..
where result is the nonterminal symbol that this rule describes and components are vari-
ous terminal and nonterminal symbols that are put together by this rule (see Section 3.2
[Symbols], page 36).

For example,



38 Bison 1.25

exp: exp ’+’ exp
says that two groupings of type exp, with a ‘+’ token in between, can be combined into a
larger grouping of type exp.
Whitespace in rules is significant only to separate symbols. You can add extra whitespace
as you wish.

Scattered among the components can be actions that determine the semantics of the
rule. An action looks like this:

{C statements}

Usually there is only one action and it follows the components. See Section 3.5.3 [Actions],
page 40.

Multiple rules for the same result can be written separately or can be joined with the
vertical-bar character ‘|’ as follows:

result: rulel-components. . .
| rule2-components. ..

They are still considered distinct rules even when joined in this way.
If components in a rule is empty, it means that result can match the empty string. For
example, here is how to define a comma-separated sequence of zero or more exp groupings:
expseq: /* empty */
| expseql

expseql: exp
| expseql ’,’ exp

It is customary to write a comment ‘/* empty */’ in each rule with no components.

3.4 Recursive Rules

A rule is called recursive when its result nonterminal appears also on its right hand
side. Nearly all Bison grammars need to use recursion, because that is the only way to
define a sequence of any number of somethings. Consider this recursive definition of a
comma-separated sequence of one or more expressions:

expseql: exp
| expseql ’,’ exp
Since the recursive use of expseql is the leftmost symbol in the right hand side, we call
this left recursion. By contrast, here the same construct is defined using right recursion:
expseql: exp
| exp ’,’ expseql
Any kind of sequence can be defined using either left recursion or right recursion, but you
should always use left recursion, because it can parse a sequence of any number of elements



Chapter 3: Bison Grammar Files 39

with bounded stack space. Right recursion uses up space on the Bison stack in proportion
to the number of elements in the sequence, because all the elements must be shifted onto the
stack before the rule can be applied even once. See Chapter 5 [The Bison Parser Algorithm
], page 57, for further explanation of this.

Indirect or mutual recursion occurs when the result of the rule does not appear directly
on its right hand side, but does appear in rules for other nonterminals which do appear on
its right hand side.

For example
expr: primary
| primary ’+’ primary
5
primary: constant
I )() expr )))
5

defines two mutually-recursive nonterminals, since each refers to the other.

3.5 Defining Language Semantics

The grammar rules for a language determine only the syntax. The semantics are de-
termined by the semantic values associated with various tokens and groupings, and by the
actions taken when various groupings are recognized.

For example, the calculator calculates properly because the value associated with each
expression is the proper number; it adds properly because the action for the grouping ‘x + y’
is to add the numbers associated with x and y.

3.5.1 Data Types of Semantic Values

In a simple program it may be sufficient to use the same data type for the semantic
values of all language constructs. This was true in the RPN and infix calculator examples
(see Section 2.1 [Reverse Polish Notation Calculator], page 19).

Bison’s default is to use type int for all semantic values. To specify some other type,
define YYSTYPE as a macro, like this:
#define YYSTYPE double

This macro definition must go in the C declarations section of the grammar file (see Sec-
tion 3.1 [Outline of a Bison Grammar], page 35).

3.5.2 More Than One Value Type

In most programs, you will need different data types for different kinds of tokens and
groupings. For example, a numeric constant may need type int or long, while a string
constant needs type char *, and an identifier might need a pointer to an entry in the
symbol table.

To use more than one data type for semantic values in one parser, Bison requires you to
do two things:



40 Bison 1.25

e Specify the entire collection of possible data types, with the %union Bison declaration
(see Section 3.6.3 [The Collection of Value Types], page 45).

e Choose one of those types for each symbol (terminal or nonterminal) for which seman-
tic values are used. This is done for tokens with the %token Bison declaration (see
Section 3.6.1 [Token Type Names], page 44) and for groupings with the %type Bison
declaration (see Section 3.6.4 [Nonterminal Symbols], page 45).

3.5.3 Actions

An action accompanies a syntactic rule and contains C code to be executed each time
an instance of that rule is recognized. The task of most actions is to compute a semantic
value for the grouping built by the rule from the semantic values associated with tokens or
smaller groupings.

An action consists of C statements surrounded by braces, much like a compound state-
ment in C. It can be placed at any position in the rule; it is executed at that position. Most
rules have just one action at the end of the rule, following all the components. Actions in
the middle of a rule are tricky and used only for special purposes (see Section 3.5.5 [Actions
in Mid-Rule], page 41).

The C code in an action can refer to the semantic values of the components matched
by the rule with the construct $n, which stands for the value of the nth component. The
semantic value for the grouping being constructed is $$. (Bison translates both of these
constructs into array element references when it copies the actions into the parser file.)

Here is a typical example:

exp: .
| exp ’+’ exp

{ 8% =981+ $3; }

This rule constructs an exp from two smaller exp groupings connected by a plus-sign token.
In the action, $1 and $3 refer to the semantic values of the two component exp groupings,
which are the first and third symbols on the right hand side of the rule. The sum is stored
into $$ so that it becomes the semantic value of the addition-expression just recognized by
the rule. If there were a useful semantic value associated with the ‘+’ token, it could be
referred to as $2.

If you don’t specify an action for a rule, Bison supplies a default: $$ = $1. Thus, the
value of the first symbol in the rule becomes the value of the whole rule. Of course, the
default rule is valid only if the two data types match. There is no meaningful default action
for an empty rule; every empty rule must have an explicit action unless the rule’s value does
not matter.

$n with n zero or negative is allowed for reference to tokens and groupings on the stack
before those that match the current rule. This is a very risky practice, and to use it reliably
yvou must be certain of the context in which the rule is applied. Here is a case in which you
can use this reliably:
foo: expr bar ’+’ expr { ...}
| expr bar ’-’ expr { ...}

s



Chapter 3: Bison Grammar Files 41

bar: /* empty */
{ previous_expr = $0; 7}
As long as bar is used only in the fashion shown here, $0 always refers to the expr which
precedes bar in the definition of foo.

3.5.4 Data Types of Values in Actions

If you have chosen a single data type for semantic values, the $$ and $n constructs
always have that data type.

If you have used %union to specify a variety of data types, then you must declare a
choice among these types for each terminal or nonterminal symbol that can have a semantic
value. Then each time you use $$ or $n, its data type is determined by which symbol it
refers to in the rule. In this example,

exp: ..
| exp ’+’ exp
{ 8% =981+ $3; }
$1 and $3 refer to instances of exp, so they all have the data type declared for the nonter-
minal symbol exp. If $2 were used, it would have the data type declared for the terminal
symbol *+° whatever that might be.

Alternatively, you can specify the data type when you refer to the value, by inserting
‘<type>’ after the ‘$’ at the beginning of the reference. For example, if you have defined
types as shown here:

hunion {
int itype;
double dtype;
b

then you can write $<itype>1 to refer to the first subunit of the rule as an integer, or
$<dtype>1 to refer to it as a double.

3.5.5 Actions in Mid-Rule

Occasionally it is useful to put an action in the middle of a rule. These actions are
written just like usual end-of-rule actions, but they are executed before the parser even
recognizes the following components.

A mid-rule action may refer to the components preceding it using $n, but it may not
refer to subsequent components because it is run before they are parsed.

The mid-rule action itself counts as one of the components of the rule. This makes a
difference when there is another action later in the same rule (and usually there is another
at the end): you have to count the actions along with the symbols when working out which
number n to use in $n.

The mid-rule action can also have a semantic value. The action can set its value with an
assignment to $$, and actions later in the rule can refer to the value using $n. Since there
is no symbol to name the action, there is no way to declare a data type for the value in



42 Bison 1.25

advance, so you must use the ‘$<...>" construct to specify a data type each time you refer
to this value.

There is no way to set the value of the entire rule with a mid-rule action, because
assignments to $$ do not have that effect. The only way to set the value for the entire rule
is with an ordinary action at the end of the rule.

Here is an example from a hypothetical compiler, handling a let statement that looks
like ‘let (variable) statement’ and serves to create a variable named variable temporarily
for the duration of statement. To parse this construct, we must put variable into the symbol
table while statement is parsed, then remove it afterward. Here is how it is done:

stmt: LET °>(’ var ’)’
{ $<context>$ = push_context ();
declare_variable ($3); }
stmt { $$ = $6;

pop_context ($<context>5); }
As soon as ‘let (variable)’ has been recognized, the first action is run. It saves a copy of
the current semantic context (the list of accessible variables) as its semantic value, using
alternative context in the data-type union. Then it calls declare_variable to add the
new variable to that list. Once the first action is finished, the embedded statement stmt
can be parsed. Note that the mid-rule action is component number 5, so the ‘stmt’ is
component number 6.

After the embedded statement is parsed, its semantic value becomes the value of the
entire let-statement. Then the semantic value from the earlier action is used to restore
the prior list of variables. This removes the temporary let-variable from the list so that it
won’t appear to exist while the rest of the program is parsed.

Taking action before a rule is completely recognized often leads to conflicts since the
parser must commit to a parse in order to execute the action. For example, the following
two rules, without mid-rule actions, can coexist in a working parser because the parser
can shift the open-brace token and look at what follows before deciding whether there is a
declaration or not:

compound: ’{’ declarations statements ’}’
| ’{’ statements °’}’
But when we add a mid-rule action as follows, the rules become nonfunctional:
compound: { prepare_for_local_variables (); }
’{? declarations statements ’}’
| ’{’ statements °’}’
Now the parser is forced to decide whether to run the mid-rule action when it has read no
farther than the open-brace. In other words, it must commit to using one rule or the other,
without sufficient information to do it correctly. (The open-brace token is what is called

the look-ahead token at this time, since the parser is still deciding what to do about it. See
Section 5.1 [Look-Ahead Tokens], page 57.)

You might think that you could correct the problem by putting identical actions into
the two rules, like this:



Chapter 3: Bison Grammar Files 43

compound: { prepare_for_local_variables (); }
’{? declarations statements ’}’
| { prepare_for_local_variables (); }
’{’ statements ’}’
But this does not help, because Bison does not realize that the two actions are identical.
(Bison never tries to understand the C code in an action.)

If the grammar is such that a declaration can be distinguished from a statement by the
first token (which is true in C), then one solution which does work is to put the action after
the open-brace, like this:

compound: ’{’ { prepare_for_local_variables (); }
declarations statements ’}’
| ’{’ statements °’}’
Now the first token of the following declaration or statement, which would in any case tell
Bison which rule to use, can still do so.

Another solution is to bury the action inside a nonterminal symbol which serves as a
subroutine:

subroutine: /#* empty */
{ prepare_for_local_variables (); }

compound: subroutine
’{? declarations statements ’}’
| subroutine
’{’ statements ’}’
Now Bison can execute the action in the rule for subroutine without deciding which rule
for compound it will eventually use. Note that the action is now at the end of its rule. Any
mid-rule action can be converted to an end-of-rule action in this way, and this is what Bison
actually does to implement mid-rule actions.

3.6 Bison Declarations

The Bison declarations section of a Bison grammar defines the symbols used in for-
mulating the grammar and the data types of semantic values. See Section 3.2 [Symbols],
page 36.

All token type names (but not single-character literal tokens such as >+’ and **?) must
be declared. Nonterminal symbols must be declared if you need to specify which data type
to use for the semantic value (see Section 3.5.2 [More Than One Value Type], page 39).

The first rule in the file also specifies the start symbol, by default. If you want some other
symbol to be the start symbol, you must declare it explicitly (see Section 1.1 [Languages
and Context-Free Grammars], page 13).



44 Bison 1.25

3.6.1 Token Type Names

The basic way to declare a token type name (terminal symbol) is as follows:
htoken name

Bison will convert this into a #define directive in the parser, so that the function yylex
(if it is in this file) can use the name name to stand for this token type’s code.

Alternatively, you can use }§left, fright, or 4nonassoc instead of }token, if you wish
to specify precedence. See Section 3.6.2 [Operator Precedence], page 44.

You can explicitly specify the numeric code for a token type by appending an integer
value in the field immediately following the token name:
htoken NUM 300

It is generally best, however, to let Bison choose the numeric codes for all token types. Bison
will automatically select codes that don’t conflict with each other or with ASCII characters.

In the event that the stack type is a union, you must augment the %token or other
token declaration to include the data type alternative delimited by angle-brackets (see
Section 3.5.2 [More Than One Value Type], page 39).

For example:

hunion { /* define stack type */
double val;
symrec *tptr;
}
htoken <val> NUM /* define token NUM and its type */

You can associate a literal string token with a token type name by writing the literal
string at the end of a jtoken declaration which declares the name. For example:

%token arrow "=>"

For example, a grammar for the C language might specify these names with equivalent
literal string tokens:

%token <operator> OR ]

htoken <operator> LE 134 ‘'<="

hleft OR ‘'<="
Once you equate the literal string and the token name, you can use them interchangeably in
further declarations or the grammar rules. The yylex function can use the token name or the
literal string to obtain the token type code number (see Section 4.2.1 [Calling Convention],
page 49).

3.6.2 Operator Precedence

Use the %left, Jright or %nonassoc declaration to declare a token and specify its
precedence and associativity, all at once. These are called precedence declarations. See
Section 5.3 [Operator Precedence], page 59, for general information on operator precedence.

The syntax of a precedence declaration is the same as that of }token: either
hleft syvmbols...

or



Chapter 3: Bison Grammar Files 45

hleft <type> symbols. ..

And indeed any of these declarations serves the purposes of %token. But in addition,
they specify the associativity and relative precedence for all the symbols:

e The associativity of an operator op determines how repeated uses of the operator nest:
whether ‘x op y op 2z’ is parsed by grouping x with y first or by grouping y with z
first. %left specifies left-associativity (grouping x with y first) and %right specifies
right-associativity (grouping y with z first). %nonassoc specifies no associativity, which
means that ‘x op y op z’ is considered a syntax error.

e The precedence of an operator determines how it nests with other operators. All
the tokens declared in a single precedence declaration have equal precedence and nest
together according to their associativity. When two tokens declared in different prece-
dence declarations associate, the one declared later has the higher precedence and is
grouped first.

3.6.3 The Collection of Value Types

The %union declaration specifies the entire collection of possible data types for semantic
values. The keyword %union is followed by a pair of braces containing the same thing that
goes inside a union in C.

For example:
hunion {
double val;
symrec *tptr;
}
This says that the two alternative types are double and symrec *. They are given names
val and tptr; these names are used in the %token and Jtype declarations to pick one of
the types for a terminal or nonterminal symbol (see Section 3.6.4 [Nonterminal Symbols],
page 45).
Note that, unlike making a union declaration in C, you do not write a semicolon after
the closing brace.

3.6.4 Nonterminal Symbols

When you use funion to specify multiple value types, you must declare the value type of
each nonterminal symbol for which values are used. This is done with a %type declaration,

like this:
%type <type> nonterminal. ..

Here nonterminal is the name of a nonterminal symbol, and type is the name given in the
union to the alternative that you want (see Section 3.6.3 [The Collection of Value Types],
page 45). You can give any number of nonterminal symbols in the same %type declaration,
if they have the same value type. Use spaces to separate the symbol names.

You can also declare the value type of a terminal symbol. To do this, use the same <type>
construction in a declaration for the terminal symbol. All kinds of token declarations allow
<type>.



46 Bison 1.25

3.6.5 Suppressing Conflict Warnings

Bison normally warns if there are any conflicts in the grammar (see Section 5.2
[Shift/Reduce Conflicts], page 58), but most real grammars have harmless shift/reduce
conflicts which are resolved in a predictable way and would be difficult to eliminate. It
is desirable to suppress the warning about these conflicts unless the number of conflicts
changes. You can do this with the %expect declaration.

The declaration looks like this:
hexpect n

Here n is a decimal integer. The declaration says there should be no warning if there are
n shift/reduce conflicts and no reduce/reduce conflicts. The usual warning is given if there
are either more or fewer conflicts, or if there are any reduce/reduce conflicts.

In general, using fexpect involves these steps:

e Compile your grammar without %expect. Use the ‘-v’ option to get a verbose list of
where the conflicts occur. Bison will also print the number of conflicts.

e Check each of the conflicts to make sure that Bison’s default resolution is what you
really want. If not, rewrite the grammar and go back to the beginning.

e Add an Yexpect declaration, copying the number n from the number which Bison
printed.

Now Bison will stop annoying you about the conflicts you have checked, but it will warn
you again if changes in the grammar result in additional conflicts.

3.6.6 The Start-Symbol

Bison assumes by default that the start symbol for the grammar is the first nonterminal
specified in the grammar specification section. The programmer may override this restriction
with the %start declaration as follows:

hstart symbol

3.6.7 A Pure (Reentrant) Parser

A reentrant program is one which does not alter in the course of execution; in other
words, it consists entirely of pure (read-only) code. Reentrancy is important whenever
asynchronous execution is possible; for example, a nonreentrant program may not be safe
to call from a signal handler. In systems with multiple threads of control, a nonreentrant
program must be called only within interlocks.

The Bison parser is not normally a reentrant program, because it uses statically allocated
variables for communication with yylex. These variables include yylval and yylloc.

The Bison declaration %pure_parser says that you want the parser to be reentrant. It
looks like this:
hpure_parser

The effect is that the two communication variables become local variables in yyparse,
and a different calling convention is used for the lexical analyzer function yylex. See
Section 4.2.4 [Calling Conventions for Pure Parsers], page 51, for the details of this. The



Chapter 3: Bison Grammar Files 47

variable yynerrs also becomes local in yyparse (see Section 4.3 [The Error Reporting
Function yyerror], page 53). The convention for calling yyparse itself is unchanged.

3.6.8 Bison Declaration Summary

Here is a summary of all Bison declarations:

hunion Declare the collection of data types that semantic values may have (see Sec-
tion 3.6.3 [The Collection of Value Types], page 45).

htoken Declare a terminal symbol (token type name) with no precedence or associativ-
ity specified (see Section 3.6.1 [Token Type Names], page 44).

hright Declare a terminal symbol (token type name) that is right-associative (see Sec-
tion 3.6.2 [Operator Precedence], page 44).

hleft Declare a terminal symbol (token type name) that is left-associative (see Sec-
tion 3.6.2 [Operator Precedence], page 44).

Jnonassoc
Declare a terminal symbol (token type name) that is nonassociative (using it in
a way that would be associative is a syntax error) (see Section 3.6.2 [Operator
Precedence], page 44).

htype Declare the type of semantic values for a nonterminal symbol (see Section 3.6.4
[Nonterminal Symbols], page 45).

hstart Specify the grammar’s start symbol (see Section 3.6.6 [The Start-Symbol],
page 46).

hexpect  Declare the expected number of shift-reduce conflicts (see Section 3.6.5 [Sup-
pressing Conflict Warnings], page 46).

hpure_parser
Request a pure (reentrant) parser program (see Section 3.6.7 [A Pure (Reen-
trant) Parser], page 46).

hno_lines
Don’t generate any #line preprocessor commands in the parser file. Ordinarily
Bison writes these commands in the parser file so that the C compiler and de-
buggers will associate errors and object code with your source file (the grammar
file). This directive causes them to associate errors with the parser file, treating
it an independent source file in its own right.

hraw The output file ‘name.h’ normally defines the tokens with Yacc-compatible
token numbers. If this option is specified, the internal Bison numbers are used
instead. (Yacc-compatible numbers start at 257 except for single character
tokens; Bison assigns token numbers sequentially for all tokens starting at 3.)

htoken_table
Generate an array of token names in the parser file. The name of the array is
yytname; yytname[i] is the name of the token whose internal Bison token code
number is i. The first three elements of yytname are always "$", "error", and
"$illegal"; after these come the symbols defined in the grammar file.



48 Bison 1.25

For single-character literal tokens and literal string tokens, the name in the table
includes the single-quote or double-quote characters: for example, "?+?" is a
single-character literal and "\"<=\""is a literal string token. All the characters
of the literal string token appear verbatim in the string found in the table; even
double-quote characters are not escaped. For example, if the token consists of
three characters ‘*"*’, its string in yytname contains ‘"*"*"’. (In C, that would
be written as "\"*\"*x\""),

When you specify Jtoken_table, Bison also generates macro definitions for
macros YYNTOKENS, YYNNTS, and YYNRULES, and YYNSTATES:

YYNTOKENS
The highest token number, plus one.

YYNNTS The number of non-terminal symbols.
YYNRULES The number of grammar rules,

YYNSTATES
The number of parser states (see Section 5.5 [Parser States],
page 62).

3.7 Multiple Parsers in the Same Program

Most programs that use Bison parse only one language and therefore contain only one
Bison parser. But what if you want to parse more than one language with the same program?
Then you need to avoid a name conflict between different definitions of yyparse, yylval,
and so on.

The easy way to do this is to use the option ‘-p prefix’ (see Chapter 9 [Invoking Bison],
page 75). This renames the interface functions and variables of the Bison parser to start
with prefix instead of ‘yy’. You can use this to give each parser distinct names that do not
conflict.

The precise list of symbols renamed is yyparse, yylex, yyerror, yynerrs, yylval,
yychar and yydebug. For example, if you use ‘-p ¢’, the names become cparse, clex, and
S0 on.

All the other variables and macros associated with Bison are not renamed. These others
are not global; there is no conflict if the same name is used in different parsers. For example,
YYSTYPE is not renamed, but defining this in different ways in different parsers causes no
trouble (see Section 3.5.1 [Data Types of Semantic Values], page 39).

The ‘-p’ option works by adding macro definitions to the beginning of the parser source
file, defining yyparse as prefixparse, and so on. This effectively substitutes one name for
the other in the entire parser file.



Chapter 4: Parser C-Language Interface 49

4 Parser C-Language Interface

The Bison parser is actually a C function named yyparse. Here we describe the interface
conventions of yyparse and the other functions that it needs to use.

Keep in mind that the parser uses many C identifiers starting with ‘yy’ and ‘YY’ for
internal purposes. If you use such an identifier (aside from those in this manual) in an
action or in additional C code in the grammar file, you are likely to run into trouble.

4.1 The Parser Function yyparse

You call the function yyparse to cause parsing to occur. This function reads tokens,
executes actions, and ultimately returns when it encounters end-of-input or an unrecoverable
syntax error. You can also write an action which directs yyparse to return immediately
without reading further.

The value returned by yyparse is 0 if parsing was successful (return is due to end-of-
input).
The value is 1 if parsing failed (return is due to a syntax error).

In an action, you can cause immediate return from yyparse by using these macros:
YYACCEPT  Return immediately with value 0 (to report success).
YYABORT  Return immediately with value 1 (to report failure).

4.2 The Lexical Analyzer Function yylex

The lexical analyzer function, yylex, recognizes tokens from the input stream and re-
turns them to the parser. Bison does not create this function automatically; you must write
it so that yyparse can call it. The function is sometimes referred to as a lexical scanner.

In simple programs, yylex is often defined at the end of the Bison grammar file. If
yylex is defined in a separate source file, you need to arrange for the token-type macro
definitions to be available there. To do this, use the ‘-d’ option when you run Bison, so
that it will write these macro definitions into a separate header file ‘name.tab.h’ which you
can include in the other source files that need it. See Chapter 9 [Invoking Bison], page 75.

4.2.1 Calling Convention for yylex

The value that yylex returns must be the numeric code for the type of token it has just
found, or 0 for end-of-input.

When a token is referred to in the grammar rules by a name, that name in the parser
file becomes a C macro whose definition is the proper numeric code for that token type. So
yylex can use the name to indicate that type. See Section 3.2 [Symbols], page 36.

When a token is referred to in the grammar rules by a character literal, the numeric
code for that character is also the code for the token type. So yylex can simply return that
character code. The null character must not be used this way, because its code is zero and
that is what signifies end-of-input.

Here is an example showing these things:



50 Bison 1.25

yylex O
{
if (¢ == EOF) /* Detect end of file. */
return O;
if (¢ == "+’ || ¢ == ’-7)
return c; /* Assume token type for ‘+’ is ’+’. x/
return INT; /* Return the type of the token. */
}

This interface has been designed so that the output from the lex utility can be used without
change as the definition of yylex.

If the grammar uses literal string tokens, there are two ways that yylex can determine
the token type codes for them:

e If the grammar defines symbolic token names as aliases for the literal string tokens,
yylex can use these symbolic names like all others. In this case, the use of the literal
string tokens in the grammar file has no effect on yylex.

e yylex can find the multi-character token in the yytname table. The index of the token
in the table is the token type’s code. The name of a multi-character token is recorded in
yytname with a double-quote, the token’s characters, and another double-quote. The
token’s characters are not escaped in any way; they appear verbatim in the contents of
the string in the table.

Here’s code for looking up a token in yytname, assuming that the characters of the
token are stored in token_buffer.

for (i = 0; i < YYNTOKENS; i++)
{
if (yytname[i] '= 0O
&& yytname[i][0] == "’
&& strncmp (yytname[i] + 1, token_buffer, strlen (token_buffer))
&& yytname[i][strlen (token_buffer) + 1] == *'°
&& yytname[i] [strlen (token_buffer) + 2] == 0)
break;

}

The yytname table is generated only if you use the %token_table declaration. See
Section 3.6.8 [Decl Summary], page 47.

4.2.2 Semantic Values of Tokens

In an ordinary (nonreentrant) parser, the semantic value of the token must be stored
into the global variable yylval. When you are using just one data type for semantic values
yylval has that type. Thus, if the type is int (the default), you might write this in yylex:



Chapter 4: Parser C-Language Interface 51

yylval = value; /#* Put value onto Bison stack. */
return INT; /* Return the type of the token. */

When you are using multiple data types, yylval’s type is a union made from the junion
declaration (see Section 3.6.3 [The Collection of Value Types|, page 45). So when you store
a token’s value, you must use the proper member of the union. If the Junion declaration
looks like this:

hunion {
int intval;
double val;
symrec *tptr;
}
then the code in yylex might look like this:
yylval.intval = value; /* Put value onto Bison stack. */
return INT; /* Return the type of the token. */

4.2.3 Textual Positions of Tokens

If you are using the ‘@n’-feature (see Section 4.4 [Special Features for Use in Actions],
page 53) in actions to keep track of the textual locations of tokens and groupings, then
you must provide this information in yylex. The function yyparse expects to find the
textual location of a token just parsed in the global variable yylloc. So yylex must store
the proper data in that variable. The value of yylloc is a structure and you need only
initialize the members that are going to be used by the actions. The four members are
called first_line, first_column, last_line and last_column. Note that the use of this
feature makes the parser noticeably slower.

The data type of yylloc has the name YYLTYPE.

4.2.4 Calling Conventions for Pure Parsers

When you use the Bison declaration %pure_parser to request a pure, reentrant parser,
the global communication variables yylval and yylloc cannot be used. (See Section 3.6.7
[A Pure (Reentrant) Parser], page 46.) In such parsers the two global variables are replaced
by pointers passed as arguments to yylex. You must declare them as shown here, and pass
the information back by storing it through those pointers.

yylex (lvalp, llocp)
YYSTYPE *1lvalp;
YYLTYPE *1locp;

*lvalp = value; /* Put value onto Bison stack. */
return INT; /* Return the type of the token. */



52 Bison 1.25

If the grammar file does not use the ‘@ constructs to refer to textual positions, then the
type YYLTYPE will not be defined. In this case, omit the second argument; yylex will be
called with only one argument.

If you use a reentrant parser, you can optionally pass additional parameter information
toit in a reentrant way. To do so, define the macro YYPARSE_PARAM as a variable name. This
modifies the yyparse function to accept one argument, of type void *, with that name.

When you call yyparse, pass the address of an object, casting the address to void *.
The grammar actions can refer to the contents of the object by casting the pointer value
back to its proper type and then dereferencing it. Here’s an example. Write this in the
parser:

Al

struct parser_control

int nastiness;
int randomness;

};

#define YYPARSE_PARAM parm
hY

Then call the parser like this:

struct parser_control

int nastiness;
int randomness;

};

{
struct parser_control foo;
/* Store proper data in foo. */
value = yyparse ((void *) &foo);

}
In the grammar actions, use expressions like this to refer to the data:
((struct parser_control *) parm)->randomness

If you wish to pass the additional parameter data to yylex, define the macro YYLEX_
PARAM just like YYPARSE_PARAM, as shown here:
W

struct parser_control

int nastiness;
int randomness;

};

#define YYPARSE_PARAM parm



Chapter 4: Parser C-Language Interface 53

#define YYLEX_PARAM parm
hY

You should then define yylex to accept one additional argument—the value of parm.
(This makes either two or three arguments in total, depending on whether an argument of
type YYLTYPE is passed.) You can declare the argument as a pointer to the proper object
type, or you can declare it as void * and access the contents as shown above.

You can use ‘fjpure_parser’ to request a reentrant parser without also using YYPARSE_
PARAM. Then you should call yyparse with no arguments, as usual.

4.3 The Error Reporting Function yyerror

The Bison parser detects a parse error or syntax error whenever it reads a token which
cannot satisfy any syntax rule. A action in the grammar can also explicitly proclaim
an error, using the macro YYERROR (see Section 4.4 [Special Features for Use in Actions],
page 53).

The Bison parser expects to report the error by calling an error reporting function named
yyerror, which you must supply. It is called by yyparse whenever a syntax error is found,
and it receives one argument. For a parse error, the string is normally "parse error'.

If you define the macro YYERROR_VERBOSE in the Bison declarations section (see Sec-
tion 3.1.2 [The Bison Declarations Section], page 35), then Bison provides a more verbose
and specific error message string instead of just plain "parse error". It doesn’t matter
what definition you use for YYERROR_VERBOSE, just whether you define it.

The parser can detect one other kind of error: stack overflow. This happens when the
input contains constructions that are very deeply nested. It isn’t likely you will encounter
this, since the Bison parser extends its stack automatically up to a very large limit. But
if overflow happens, yyparse calls yyerror in the usual fashion, except that the argument
string is "parser stack overflow".

The following definition suffices in simple programs:

yyerror (s)
char *s;
{
fprintf (stderr, "%s\n", s);
}
After yyerror returns to yyparse, the latter will attempt error recovery if you have

written suitable error recovery grammar rules (see Chapter 6 [Error Recovery], page 67). If
recovery is impossible, yyparse will immediately return 1.

The variable yynerrs contains the number of syntax errors encountered so far. Normally
this variable is global; but if you request a pure parser (see Section 3.6.7 [A Pure (Reentrant)
Parser], page 46) then it is a local variable which only the actions can access.

4.4 Special Features for Use in Actions

Here is a table of Bison constructs, variables and macros that are useful in actions.



54 Bison 1.25

‘¢’ Acts like a variable that contains the semantic value for the grouping made by
the current rule. See Section 3.5.3 [Actions], page 40.

‘$n’ Acts like a variable that contains the semantic value for the nth component of
the current rule. See Section 3.5.3 [Actions], page 40.

‘$<typealt>$’
Like $$ but specifies alternative typealt in the union specified by the %union
declaration. See Section 3.5.4 [Data Types of Values in Actions], page 41.

‘$<typealt>n’
Like $n but specifies alternative tvpealt in the union specified by the %union
declaration. See Section 3.5.4 [Data Types of Values in Actions], page 41.

‘YYABORT;’
Return immediately from yyparse, indicating failure. See Section 4.1 [The
Parser Function yyparse]|, page 49.

‘YYACCEPT;’
Return immediately from yyparse, indicating success. See Section 4.1 [The
Parser Function yyparse]|, page 49.

‘YYBACKUP (token, value);’
Unshift a token. This macro is allowed only for rules that reduce a single value,
and only when there is no look-ahead token. It installs a look-ahead token with
token type token and semantic value value; then it discards the value that was
going to be reduced by this rule.

If the macro is used when it is not valid, such as when there is a look-ahead
token already, then it reports a syntax error with a message ‘cannot back up’
and performs ordinary error recovery.

In either case, the rest of the action is not executed.
‘YYEMPTY’  Value stored in yychar when there is no look-ahead token.

‘YYERROR;’
Cause an immediate syntax error. This statement initiates error recovery just as
if the parser itself had detected an error; however, it does not call yyerror, and
does not print any message. If you want to print an error message, call yyerror
explicitly before the ‘YYERROR;’ statement. See Chapter 6 [Error Recovery],
page 67.

‘YYRECOVERING’
This macro stands for an expression that has the value 1 when the parser is
recovering from a syntax error, and 0 the rest of the time. See Chapter 6 [Error
Recovery], page 67.

‘yychar’  Variable containing the current look-ahead token. (In a pure parser, this is ac-
tually a local variable within yyparse.) When there is no look-ahead token, the
value YYEMPTY is stored in the variable. See Section 5.1 [Look-Ahead Tokens],
page 57.



Chapter 4: Parser C-Language Interface 55

‘yyclearin;’

‘yyerrok;’

Discard the current look-ahead token. This is useful primarily in error rules.
See Chapter 6 [Error Recovery], page 67.

Resume generating error messages immediately for subsequent syntax errors.
This is useful primarily in error rules. See Chapter 6 [Error Recovery], page 67.

Acts like a structure variable containing information on the line numbers and
column numbers of the nth component of the current rule. The structure has
four members, like this:
struct {
int first_line, last_line;
int first_column, last_column;
};
Thus, to get the starting line number of the third component, use ‘@3.first_line’.

In order for the members of this structure to contain valid information, you
must make yylex supply this information about each token. If you need only
certain members, then yylex need only fill in those members.

The use of this feature makes the parser noticeably slower.



56

Bison 1.25



Chapter 5: The Bison Parser Algorithm 57

5 The Bison Parser Algorithm

As Bison reads tokens, it pushes them onto a stack along with their semantic values.
The stack is called the parser stack. Pushing a token is traditionally called shifting.

For example, suppose the infix calculator has read ‘1 + 5 *’, with a ‘3’ to come. The
stack will have four elements, one for each token that was shifted.

But the stack does not always have an element for each token read. When the last
n tokens and groupings shifted match the components of a grammar rule, they can be
combined according to that rule. This is called reduction. Those tokens and groupings are
replaced on the stack by a single grouping whose symbol is the result (left hand side) of
that rule. Running the rule’s action is part of the process of reduction, because this is what
computes the semantic value of the resulting grouping.

For example, if the infix calculator’s parser stack contains this:
1 +5 %3

and the next input token is a newline character, then the last three elements can be reduced
to 15 via the rule:

expr: expr ’*’ expr;
Then the stack contains just these three elements:
1+ 15

At this point, another reduction can be made, resulting in the single value 16. Then the
newline token can be shifted.

The parser tries, by shifts and reductions, to reduce the entire input down to a single
grouping whose symbol is the grammar’s start-symbol (see Section 1.1 [Languages and
Context-Free Grammars], page 13).

This kind of parser is known in the literature as a bottom-up parser.

5.1 Look-Ahead Tokens

The Bison parser does not always reduce immediately as soon as the last n tokens and
groupings match a rule. This is because such a simple strategy is inadequate to handle
most languages. Instead, when a reduction is possible, the parser sometimes “looks ahead”
at the next token in order to decide what to do.

When a token is read, it is not immediately shifted; first it becomes the look-ahead token,
which is not on the stack. Now the parser can perform one or more reductions of tokens
and groupings on the stack, while the look-ahead token remains off to the side. When no
more reductions should take place, the look-ahead token is shifted onto the stack. This does
not mean that all possible reductions have been done; depending on the token type of the
look-ahead token, some rules may choose to delay their application.

Here is a simple case where look-ahead is needed. These three rules define expressions
which contain binary addition operators and postfix unary factorial operators (‘!’), and
allow parentheses for grouping.



H8& Bison 1.25

expr: term ’+’ expr
| term
5
term: >(? expr )’
| term *1!°
| NUMBER

Suppose that the tokens ‘1 + 2’ have been read and shifted; what should be done? If
the following token is *)’, then the first three tokens must be reduced to form an expr.
This is the only valid course, because shifting the )’ would produce a sequence of symbols
term ’)’, and no rule allows this.

If the following token is ‘!’, then it must be shifted immediately so that ‘2 !’ can be
reduced to make a term. If instead the parser were to reduce before shifting, ‘1 + 2’ would
become an expr. It would then be impossible to shift the ‘!’ because doing so would produce
on the stack the sequence of symbols expr >!?. No rule allows that sequence.

The current look-ahead token is stored in the variable yychar. See Section 4.4 [Special
Features for Use in Actions], page 53.

5.2 Shift /Reduce Conflicts

Suppose we are parsing a language which has if-then and if-then-else statements, with a

pair of rules like this:
if_stmt:
IF expr THEN stmt
| IF expr THEN stmt ELSE stmt

Here we assume that IF, THEN and ELSE are terminal symbols for specific keyword tokens.

When the ELSE token is read and becomes the look-ahead token, the contents of the
stack (assuming the input is valid) are just right for reduction by the first rule. But it
is also legitimate to shift the ELSE, because that would lead to eventual reduction by the
second rule.

This situation, where either a shift or a reduction would be valid, is called a shift/reduce
conflict. Bison is designed to resolve these conflicts by choosing to shift, unless otherwise
directed by operator precedence declarations. To see the reason for this, let’s contrast it
with the other alternative.

Since the parser prefers to shift the ELSE, the result is to attach the else-clause to the
innermost if-statement, making these two inputs equivalent:

if x then if y then win (); else lose;

if x then do; if y then win (); else lose; end;

But if the parser chose to reduce when possible rather than shift, the result would be to
attach the else-clause to the outermost if-statement, making these two inputs equivalent:

if x then if y then win (); else lose;



Chapter 5: The Bison Parser Algorithm 59

if x then do; if y then win (); end; else lose;

The conflict exists because the grammar as written is ambiguous: either parsing of the
simple nested if-statement is legitimate. The established convention is that these ambiguities
are resolved by attaching the else-clause to the innermost if-statement; this is what Bison
accomplishes by choosing to shift rather than reduce. (It would ideally be cleaner to write an
unambiguous grammar, but that is very hard to do in this case.) This particular ambiguity
was first encountered in the specifications of Algol 60 and is called the “dangling else”
ambiguity.

To avoid warnings from Bison about predictable, legitimate shift/reduce conflicts, use
the %expect n declaration. There will be no warning as long as the number of shift/reduce
conflicts is exactly n. See Section 3.6.5 [Suppressing Conflict Warnings], page 46.

The definition of if_stmt above is solely to blame for the conflict, but the conflict
does not actually appear without additional rules. Here is a complete Bison input file that
actually manifests the conflict:

%token IF THEN ELSE variable

W
stmt: expr
| if_stmt
if_stmt:
IF expr THEN stmt
| IF expr THEN stmt ELSE stmt
expr: variable

5.3 Operator Precedence

Another situation where shift/reduce conflicts appear is in arithmetic expressions. Here
shifting is not always the preferred resolution; the Bison declarations for operator precedence
allow you to specify when to shift and when to reduce.

5.3.1 When Precedence is Needed

Consider the following ambiguous grammar fragment (ambiguous because the input
‘1 = 2 * 3’ can be parsed in two different ways):
expr: expr ’-’ expr
| expr ’*’ expr
| expr ’<’ expr
I )() expr )))

Suppose the parser has seen the tokens ‘1°, ‘=” and ‘2’; should it reduce them via the rule
for the addition operator? It depends on the next token. Of course, if the next token is
)’, we must reduce; shifting is invalid because no single rule can reduce the token sequence



60 Bison 1.25

‘= 2 )7 or anything starting with that. But if the next token is ‘*’ or ‘<’, we have a choice:
either shifting or reduction would allow the parse to complete, but with different results.

To decide which one Bison should do, we must consider the results. If the next operator
token op is shifted, then it must be reduced first in order to permit another opportunity
to reduce the sum. The result is (in effect) ‘1 - (2 op 3)’. On the other hand, if the
subtraction is reduced before shifting op, the result is ‘(1 - 2) op 3’. Clearly, then, the
choice of shift or reduce should depend on the relative precedence of the operators ‘=’ and
op: ‘*” should be shifted first, but not ‘<’.

What about input such as ‘1 = 2 - 5’ should this be ‘(1 - 2) = 5 or should it be
‘1 - (2 -5)"7 For most operators we prefer the former, which is called left association.
The latter alternative, right association, is desirable for assignment operators. The choice
of left or right association is a matter of whether the parser chooses to shift or reduce when
the stack contains ‘1 = 2" and the look-ahead token is ‘=’: shifting makes right-associativity.

5.3.2 Specifying Operator Precedence

Bison allows you to specify these choices with the operator precedence declarations
hleft and Jjright. Each such declaration contains a list of tokens, which are operators
whose precedence and associativity is being declared. The %left declaration makes all
those operators left-associative and the %right declaration makes them right-associative.
A third alternative is inonassoc, which declares that it is a syntax error to find the same
operator twice “in a row”.

The relative precedence of different operators is controlled by the order in which they
are declared. The first §1left or fright declaration in the file declares the operators whose
precedence is lowest, the next such declaration declares the operators whose precedence is
a little higher, and so on.

5.3.3 Precedence Examples

In our example, we would want the following declarations:
hleft °<’°
hleft °-2
hleft %
In a more complete example, which supports other operators as well, we would declare
them in groups of equal precedence. For example, >+’ is declared with *=2:
%left ’<’ ’>° =’ NE LE GE
Yleft *+7 2=
hleft x> 2/
(Here NE and so on stand for the operators for “not equal” and so on. We assume that
these tokens are more than one character long and therefore are represented by names, not
character literals.)

5.3.4 How Precedence Works

The first effect of the precedence declarations is to assign precedence levels to the terminal
symbols declared. The second effect is to assign precedence levels to certain rules: each rule



Chapter 5: The Bison Parser Algorithm 61

gets its precedence from the last terminal symbol mentioned in the components. (You
can also specify explicitly the precedence of a rule. See Section 5.4 [Context-Dependent
Precedence], page 61.)

Finally, the resolution of conflicts works by comparing the precedence of the rule being
considered with that of the look-ahead token. If the token’s precedence is higher, the choice
is to shift. If the rule’s precedence is higher, the choice is to reduce. If they have equal
precedence, the choice is made based on the associativity of that precedence level. The
verbose output file made by ‘-v’ (see Chapter 9 [Invoking Bison], page 75) says how each
conflict was resolved.

Not all rules and not all tokens have precedence. If either the rule or the look-ahead
token has no precedence, then the default is to shift.

5.4 Context-Dependent Precedence

Often the precedence of an operator depends on the context. This sounds outlandish at
first, but it is really very common. For example, a minus sign typically has a very high prece-
dence as a unary operator, and a somewhat lower precedence (lower than multiplication)
as a binary operator.

The Bison precedence declarations, %left, fright and %nonassoc, can only be used once
for a given token; so a token has only one precedence declared in this way. For context-
dependent precedence, you need to use an additional mechanism: the %prec modifier for
rules.

The %prec modifier declares the precedence of a particular rule by specifying a terminal
symbol whose precedence should be used for that rule. It’s not necessary for that symbol
to appear otherwise in the rule. The modifier’s syntax is:

hprec terminal-symbol

and it is written after the components of the rule. Its effect is to assign the rule the
precedence of terminal-symbol, overriding the precedence that would be deduced for it in
the ordinary way. The altered rule precedence then affects how conflicts involving that rule
are resolved (see Section 5.3 [Operator Precedence], page 59).

Here is how %prec solves the problem of unary minus. First, declare a precedence for a
fictitious terminal symbol named UMINUS. There are no tokens of this type, but the symbol
serves to stand for its precedence:

Yleft >+ °=?
Yleft **°
%left UMINUS

Now the precedence of UMINUS can be used in specific rules:

exp: ..
| exp ’-’ exp

| -’ exp /prec UMINUS



62 Bison 1.25

5.5 Parser States

The function yyparse is implemented using a finite-state machine. The values pushed
on the parser stack are not simply token type codes; they represent the entire sequence of
terminal and nonterminal symbols at or near the top of the stack. The current state collects
all the information about previous input which is relevant to deciding what to do next.

Each time a look-ahead token is read, the current parser state together with the type of
look-ahead token are looked up in a table. This table entry can say, “Shift the look-ahead
token.” In this case, it also specifies the new parser state, which is pushed onto the top
of the parser stack. Or it can say, “Reduce using rule number n.” This means that a
certain number of tokens or groupings are taken off the top of the stack, and replaced by
one grouping. In other words, that number of states are popped from the stack, and one
new state is pushed.

There is one other alternative: the table can say that the look-ahead token is erroneous
in the current state. This causes error processing to begin (see Chapter 6 [Error Recovery],
page 67).

5.6 Reduce/Reduce Conflicts

A reduce/reduce conflict occurs if there are two or more rules that apply to the same
sequence of input. This usually indicates a serious error in the grammar.

For example, here is an erroneous attempt to define a sequence of zero or more word
groupings.
sequence: /* empty */
{ printf ("empty sequence\n"); }
| maybeword
| sequence word
{ printf ("added word %s\n", $2); }

s

maybeword: /#* empty */
{ printf ("empty maybeword\n'"); }
| word

{ printf ("single word %s\n", $1); }
The error is an ambiguity: there is more than one way to parse a single word into a
sequence. It could be reduced to a maybeword and then into a sequence via the second
rule. Alternatively, nothing-at-all could be reduced into a sequence via the first rule, and
this could be combined with the word using the third rule for sequence.

There is also more than one way to reduce nothing-at-all into a sequence. This can be
done directly via the first rule, or indirectly via maybeword and then the second rule.

You might think that this is a distinction without a difference, because it does not change
whether any particular input is valid or not. But it does affect which actions are run. One
parsing order runs the second rule’s action; the other runs the first rule’s action and the
third rule’s action. In this example, the output of the program changes.



Chapter 5: The Bison Parser Algorithm 63

Bison resolves a reduce/reduce conflict by choosing to use the rule that appears first in
the grammar, but it is very risky to rely on this. Every reduce/reduce conflict must be
studied and usually eliminated. Here is the proper way to define sequence:

sequence: /* empty */
{ printf ("empty sequence\n"); }
| sequence word
{ printf ("added word ¥%s\n", $2); }

Here is another common error that yields a reduce/reduce conflict

sequence: /* empty */
| sequence words
| sequence redirects

s

words: /* empty */
| words word

s

redirects:/* empty */
| redirects redirect

The intention here is to define a sequence which can contain either word or redirect
groupings. The individual definitions of sequence, words and redirects are error-free,
but the three together make a subtle ambiguity: even an empty input can be parsed in
infinitely many ways!

Consider: nothing-at-all could be a words. Or it could be two words in a row, or three,
or any number. It could equally well be a redirects, or two, or any number. Or it could
be a words followed by three redirects and another words. And so on.

Here are two ways to correct these rules. First, to make it a single level of sequence:
sequence: /* empty */
| sequence word
| sequence redirect
H
Second, to prevent either a words or a redirects from being empty:
sequence: /* empty */
| sequence words
| sequence redirects

s

words: word
| words word

s

redirects:redirect
| redirects redirect

s



64 Bison 1.25

5.7 Mysterious Reduce/Reduce Conflicts

Sometimes reduce/reduce conflicts can occur that don’t look warranted. Here is an
example:

%token ID
Wk

def: param_spec return_spec ’,’

s

param_spec:

type
| name_list ’:’ type
5
return_spec:
type
| name ’:’ type
5
type: ID
5
name: ID
5
name_list:
name

| name ’,’ name_list
It would seem that this grammar can be parsed with only a single token of look-ahead:

when a param_spec is being read, an ID is a name if a comma or colon follows, or a type if
another ID follows. In other words, this grammar is LR(1).

However, Bison, like most parser generators, cannot actually handle all LR(1) grammars.
In this grammar, two contexts, that after an ID at the beginning of a param_spec and
likewise at the beginning of a return_spec, are similar enough that Bison assumes they
are the same. They appear similar because the same set of rules would be active—the
rule for reducing to a name and that for reducing to a type. Bison is unable to determine
at that stage of processing that the rules would require different look-ahead tokens in the
two contexts, so it makes a single parser state for them both. Combining the two contexts
causes a conflict later. In parser terminology, this occurrence means that the grammar is

not LALR(1).

In general, it is better to fix deficiencies than to document them. But this particular
deficiency is intrinsically hard to fix; parser generators that can handle LR(1) grammars are
hard to write and tend to produce parsers that are very large. In practice, Bison is more
useful as it is now.

When the problem arises, you can often fix it by identifying the two parser states that are
being confused, and adding something to make them look distinct. In the above example,
adding one rule to return_spec as follows makes the problem go away:



Chapter 5: The Bison Parser Algorithm 65

%token BOGUS

W
return_spec:
type
| name ’:’ type
/* This rule is never used. */
I ID BOGUS

This corrects the problem because it introduces the possibility of an additional active
rule in the context after the ID at the beginning of return_spec. This rule is not active
in the corresponding context in a param_spec, so the two contexts receive distinct parser
states. As long as the token BOGUS is never generated by yylex, the added rule cannot alter
the way actual input is parsed.

In this particular example, there is another way to solve the problem: rewrite the rule
for return_spec to use ID directly instead of via name. This also causes the two confusing
contexts to have different sets of active rules, because the one for return_spec activates
the altered rule for return_spec rather than the one for name.

param_spec:

type
| name_list ’:’ type
return_spec:
type
| ID ’:’ type

s

5.8 Stack Overflow, and How to Avoid It

The Bison parser stack can overflow if too many tokens are shifted and not reduced.
When this happens, the parser function yyparse returns a nonzero value, pausing only to
call yyerror to report the overflow.

By defining the macro YYMAXDEPTH, you can control how deep the parser stack can
become before a stack overflow occurs. Define the macro with a value that is an integer
This value is the maximum number of tokens that can be shifted (and not reduced) before
overflow. It must be a constant expression whose value is known at compile time.

The stack space allowed is not necessarily allocated. If you specify a large value for
YYMAXDEPTH, the parser actually allocates a small stack at first, and then makes it bigger by
stages as needed. This increasing allocation happens automatically and silently. Therefore,
yvou do not need to make YYMAXDEPTH painfully small merely to save space for ordinary
inputs that do not need much stack.

The default value of YYMAXDEPTH, if you do not define it, is 10000

You can control how much stack is allocated initially by defining the macro YYINITDEPTH.
This value too must be a compile-time constant integer. The default is 200.



66

Bison 1.25



Chapter 6: Error Recovery 67

6 Error Recovery

It is not usually acceptable to have a program terminate on a parse error. For example,
a compiler should recover sufficiently to parse the rest of the input file and check it for
errors; a calculator should accept another expression.

In a simple interactive command parser where each input is one line, it may be sufficient
to allow yyparse to return 1 on error and have the caller ignore the rest of the input line
when that happens (and then call yyparse again). But this is inadequate for a compiler,
because it forgets all the syntactic context leading up to the error. A syntax error deep
within a function in the compiler input should not cause the compiler to treat the following
line like the beginning of a source file.

You can define how to recover from a syntax error by writing rules to recognize the
special token error. This is a terminal symbol that is always defined (you need not declare
it) and reserved for error handling. The Bison parser generates an error token whenever
a syntax error happens; if you have provided a rule to recognize this token in the current
context, the parse can continue.

For example
stmnts: /* empty string */
| stmnts ’\n’

| stmnts exp ’\n’
| stmnts error ’\n’

The fourth rule in this example says that an error followed by a newline makes a valid
addition to any stmnts.

What happens if a syntax error occurs in the middle of an exp? The error recovery rule,
interpreted strictly, applies to the precise sequence of a stmnts, an error and a newline. If
an error occurs in the middle of an exp, there will probably be some additional tokens and
subexpressions on the stack after the last stmnts, and there will be tokens to read before
the next newline. So the rule is not applicable in the ordinary way.

But Bison can force the situation to fit the rule, by discarding part of the semantic
context and part of the input. First it discards states and objects from the stack until
it gets back to a state in which the error token is acceptable. (This means that the
subexpressions already parsed are discarded, back to the last complete stmnts.) At this
point the error token can be shifted. Then, if the old look-ahead token is not acceptable
to be shifted next, the parser reads tokens and discards them until it finds a token which is
acceptable. In this example, Bison reads and discards input until the next newline so that
the fourth rule can apply.

The choice of error rules in the grammar is a choice of strategies for error recovery. A
simple and useful strategy is simply to skip the rest of the current input line or current
statement if an error is detected:

stmnt: error ’;’ /* on error, skip until ’;’ is read */

It is also useful to recover to the matching close-delimiter of an opening-delimiter that has
already been parsed. Otherwise the close-delimiter will probably appear to be unmatched,
and generate another, spurious error message:



68 Bison 1.25

primary: ’(’ expr ’)’
| >(’ error ’)’

Error recovery strategies are necessarily guesses. When they guess wrong, one syntax
error often leads to another. In the above example, the error recovery rule guesses that an
error is due to bad input within one stmnt. Suppose that instead a spurious semicolon is
inserted in the middle of a valid stmnt. After the error recovery rule recovers from the first
error, another syntax error will be found straightaway, since the text following the spurious
semicolon is also an invalid stmnt.

To prevent an outpouring of error messages, the parser will output no error message for
another syntax error that happens shortly after the first; only after three consecutive input
tokens have been successfully shifted will error messages resume.

Note that rules which accept the error token may have actions, just as any other rules
can.

You can make error messages resume immediately by using the macro yyerrok in an
action. If you do this in the error rule’s action, no error messages will be suppressed. This
macro requires no arguments; ‘yyerrok;’ is a valid C statement.

The previous look-ahead token is reanalyzed immediately after an error. If this is unac-
ceptable, then the macro yyclearin may be used to clear this token. Write the statement
‘yyclearin;’ in the error rule’s action.

For example, suppose that on a parse error, an error handling routine is called that
advances the input stream to some point where parsing should once again commence. The
next symbol returned by the lexical scanner is probably correct. The previous look-ahead
token ought to be discarded with ‘yyclearin;’.

The macro YYRECOVERING stands for an expression that has the value 1 when the parser
is recovering from a syntax error, and 0 the rest of the time. A value of 1 indicates that
error messages are currently suppressed for new syntax errors.



Chapter 7: Handling Context Dependencies 69

7 Handling Context Dependencies

The Bison paradigm is to parse tokens first, then group them into larger syntactic units.
In many languages, the meaning of a token is affected by its context. Although this violates
the Bison paradigm, certain techniques (known as kludges) may enable you to write Bison
parsers for such languages.

(Actually, “kludge” means any technique that gets its job done but is neither clean nor
robust.)

7.1 Semantic Info in Token Types

The C language has a context dependency: the way an identifier is used depends on
what its current meaning is. For example, consider this:

foo (x);

This looks like a function call statement, but if foo is a typedef name, then this is
actually a declaration of x. How can a Bison parser for C decide how to parse this input?

The method used in GNU C is to have two different token types, IDENTIFIER and
TYPENAME. When yylex finds an identifier, it looks up the current declaration of the iden-
tifier in order to decide which token type to return: TYPENAME if the identifier is declared
as a typedef, IDENTIFIER otherwise.

The grammar rules can then express the context dependency by the choice of token type
to recognize. IDENTIFIER is accepted as an expression, but TYPENAME is not. TYPENAME can
start a declaration, but IDENTIFIER cannot. In contexts where the meaning of the identifier
is not significant, such as in declarations that can shadow a typedef name, either TYPENAME
or IDENTIFIER is accepted—there is one rule for each of the two token types.

This technique is simple to use if the decision of which kinds of identifiers to allow is
made at a place close to where the identifier is parsed. But in C this is not always so: C
allows a declaration to redeclare a typedef name provided an explicit type has been specified
earlier:

typedef int foo, bar, lose;
static foo (bar); /* redeclare bar as static variable */
static int foo (lose); /* redeclare foo as function */

Unfortunately, the name being declared is separated from the declaration construct itself
by a complicated syntactic structure—the “declarator”.

As aresult, the part of Bison parser for C needs to be duplicated, with all the nonterminal
names changed: once for parsing a declaration in which a typedef name can be redefined,
and once for parsing a declaration in which that can’t be done. Here is a part of the
duplication, with actions omitted for brevity:

initdcl:
declarator maybeasm ’=’
init
| declarator maybeasm

s



70 Bison 1.25

notype_initdcl:
notype_declarator maybeasm ’=’
init
| notype_declarator maybeasm

s

Here initdcl can redeclare a typedef name, but notype_initdcl cannot. The distinction
between declarator and notype_declarator is the same sort of thing.

There is some similarity between this technique and a lexical tie-in (described next), in
that information which alters the lexical analysis is changed during parsing by other parts of
the program. The difference is here the information is global, and is used for other purposes
in the program. A true lexical tie-in has a special-purpose flag controlled by the syntactic
context.

7.2 Lexical Tie-ins

One way to handle context-dependency is the lexical tie-in: a flag which is set by Bison
actions, whose purpose is to alter the way tokens are parsed.

For example, suppose we have a language vaguely like C, but with a special construct
‘hex (hex-expr)’. After the keyword hex comes an expression in parentheses in which all
integers are hexadecimal. In particular, the token ‘alb’ must be treated as an integer rather
than as an identifier if it appears in that context. Here is how you can do it:

Al
int hexflag;
hY
W
expr: IDENTIFIER
| constant
| HEX °(°
{ hexflag = 1; }
expr ’)’
{ hexflag = 0;
$$ = $4;

| expr ’+’ expr

{ $$ = make_sum ($1, $3); }

constant:
INTEGER
| STRING
Here we assume that yylex looks at the value of hexflag; when it is nonzero, all integers
are parsed in hexadecimal, and tokens starting with letters are parsed as integers if possible.

The declaration of hexflag shown in the C declarations section of the parser file is
needed to make it accessible to the actions (see Section 3.1.1 [The C Declarations Section],
page 35). You must also write the code in yylex to obey the flag.



Chapter 7: Handling Context Dependencies 71

7.3 Lexical Tie-ins and Error Recovery

Lexical tie-ins make strict demands on any error recovery rules you have. See Chapter 6
[Error Recovery], page 67.

The reason for this is that the purpose of an error recovery rule is to abort the parsing
of one construct and resume in some larger construct. For example, in C-like languages, a
typical error recovery rule is to skip tokens until the next semicolon, and then start a new
statement, like this:
stmt: expr ’;’
| IF °(? expr ’)’ stmt { ... }

error ’;’
{ hexflag = 0; }

If there is a syntax error in the middle of a ‘hex (expr)’ construct, this error rule will
apply, and then the action for the completed ‘hex (expr)’ will never run. So hexflag would
remain set for the entire rest of the input, or until the next hex keyword, causing identifiers
to be misinterpreted as integers.

To avoid this problem the error recovery rule itself clears hexflag.

There may also be an error recovery rule that works within expressions. For example,
there could be a rule which applies within parentheses and skips to the close-parenthesis:
expr: ...
| >’ expr 7)’
{88 =282; }

| °(’ error )’

If this rule acts within the hex construct, it is not going to abort that construct (since
it applies to an inner level of parentheses within the construct). Therefore, it should not
clear the flag: the rest of the hex construct should be parsed with the flag still in effect.

What if there is an error recovery rule which might abort out of the hex construct or
might not, depending on circumstances? There is no way you can write the action to
determine whether a hex construct is being aborted or not. So if you are using a lexical
tie-in, you had better make sure your error recovery rules are not of this kind. Each rule
must be such that you can be sure that it always will, or always won’t, have to clear the

flag.



72

Bison 1.25



Chapter 8: Debugging Your Parser 73

8 Debugging Your Parser

If a Bison grammar compiles properly but doesn’t do what you want when it runs, the
yydebug parser-trace feature can help you figure out why.

To enable compilation of trace facilities, you must define the macro YYDEBUG when you
compile the parser. You could use ‘-DYYDEBUG=1" as a compiler option or you could put
‘#define YYDEBUG 1’in the C declarations section of the grammar file (see Section 3.1.1 [The
C Declarations Section], page 35). Alternatively, use the ‘-t’ option when you run Bison
(see Chapter 9 [Invoking Bison], page 75). We always define YYDEBUG so that debugging is
always possible.

The trace facility uses stderr, so you must add #include <stdio.h> to the C declara-
tions section unless it is already there.

Once you have compiled the program with trace facilities, the way to request a trace is
to store a nonzero value in the variable yydebug. You can do this by making the C code do
it (in main, perhaps), or you can alter the value with a C debugger.

Each step taken by the parser when yydebug is nonzero produces a line or two of trace
information, written on stderr. The trace messages tell you these things:

e FEach time the parser calls yylex, what kind of token was read.

e Each time a token is shifted, the depth and complete contents of the state stack (see
Section 5.5 [Parser States], page 62).

e FEach time a rule is reduced, which rule it is, and the complete contents of the state
stack afterward.

To make sense of this information, it helps to refer to the listing file produced by the
Bison ‘-v’ option (see Chapter 9 [Invoking Bison], page 75). This file shows the meaning
of each state in terms of positions in various rules, and also what each state will do with
each possible input token. As you read the successive trace messages, you can see that the
parser is functioning according to its specification in the listing file. Eventually you will
arrive at the place where something undesirable happens, and you will see which parts of
the grammar are to blame.

The parser file is a C program and you can use C debuggers on it, but it’s not easy to
interpret what it is doing. The parser function is a finite-state machine interpreter, and
aside from the actions it executes the same code over and over. Only the values of variables
show where in the grammar it is working.

The debugging information normally gives the token type of each token read, but not
its semantic value. You can optionally define a macro named YYPRINT to provide a way to
print the value. If you define YYPRINT, it should take three arguments. The parser will pass
a standard [/O stream, the numeric code for the token type, and the token value (from
yylval).

Here is an example of YYPRINT suitable for the multi-function calculator (see Section 2.4.1
[Declarations for mfcalc], page 27):

#define YYPRINT(file, type, value) yyprint (file, type, value)

static void



74 Bison 1.25

yyprint (file, type, value)
FILE *file;
int type;
YYSTYPE value;

{

if (type == VAR)
fprintf (file, " s"
else if (type == NUM)

fprintf (file, " %d", value.val);
T

, value.tptr->name);



Chapter 9: Invoking Bison 75

9 Invoking Bison

The usual way to invoke Bison is as follows:

bison infile

Here infile is the grammar file name, which usually ends in ‘.y’. The parser file’s

name is made by replacing the ‘.y’” with ‘.tab.c’. Thus, the ‘bison foo.y’ filename yields
‘foo.tab.c’, and the ‘bison hack/foo.y’ filename yields ‘hack/foo.tab.c’.

9.1 Bison Options

Bison supports both traditional single-letter options and mnemonic long option names.
Long option names are indicated with ‘== instead of ‘=’. Abbreviations for option names
are allowed as long as they are unique. When a long option takes an argument, like
‘-—file-prefix’, connect the option name and the argument with ‘=’.

Here is a list of options that can be used with Bison, alphabetized by short option. It is
followed by a cross key alphabetized by long option.

‘~b file-prefix’

‘—-=file-prefix=prefix’
Specify a prefix to use for all Bison output file names. The names are chosen
as if the input file were named ‘prefix.c’.

(_d7

‘-—defines’
Write an extra output file containing macro definitions for the token type names
defined in the grammar and the semantic value type YYSTYPE, as well as a few
extern variable declarations.

If the parser output file is named ‘name.c’ then this file is named ‘name.h’.

This output file is essential if you wish to put the definition of yylex in a
separate source file, because yylex needs to be able to refer to token type codes
and the variable yylval. See Section 4.2.2 [Semantic Values of Tokens], page 50.

C_l?

‘--no-lines’
Don’t put any #line preprocessor commands in the parser file. Ordinarily
Bison puts them in the parser file so that the C compiler and debuggers will
associate errors with your source file, the grammar file. This option causes them
to associate errors with the parser file, treating it as an independent source file
in its own right.

‘-n’

‘--no-parser’
Do not include any C code in the parser file; generate tables only. The parser
file contains just #define directives and static variable declarations.

This option also tells Bison to write the C code for the grammar actions into
a file named ‘filename.act’, in the form of a brace-surrounded body fit for a
switch statement.



76 Bison 1.25

‘-0 outfile’

‘—-—output-file=outfile’
Specify the name outfile for the parser file.
The other output files” names are constructed from outfile as described under
the ‘-=v’ and ‘-d’ options.

‘-p prefix’

‘—-—name-prefix=prefix’
Rename the external symbols used in the parser so that they start with prefix
instead of ‘yy’. The precise list of symbols renamed is yyparse, yylex, yyerror,
yynerrs, yylval, yychar and yydebug.

For example, if you use ‘-p ¢’, the names become cparse, clex, and so on.

See Section 3.7 [Multiple Parsers in the Same Program], page 48.
‘—-raw’ Pretend that %raw was specified. See Section 3.6.8 [Decl Summary], page 47.

‘-—debug’ Output a definition of the macro YYDEBUG into the parser file, so that the
debugging facilities are compiled. See Chapter 8 [Debugging Your Parser],

page 73.
‘—y’
‘--verbose’
Write an extra output file containing verbose descriptions of the parser states
and what is done for each type of look-ahead token in that state.
This file also describes all the conflicts, both those resolved by operator prece-
dence and the unresolved ones.
The file’s name is made by removing ‘.tab.c’ or ‘.c’ from the parser output
file name, and adding ‘.output’ instead.
Therefore, if the input file is ‘foo.y’, then the parser file is called ‘foo.tab.c’
by default. As a consequence, the verbose output file is called ‘foo.output’.
(_V7
‘--version’
Print the version number of Bison and exit.
(_h7
‘-=help’ Print a summary of the command-line options to Bison and exit.
c_yv
‘--yacc’

‘-—fixed-output-files’
Equivalent to ‘-0 y.tab.c’; the parser output file is called ‘y.tab.c’, and the
other outputs are called ‘y.output’ and ‘y.tab.h’. The purpose of this option
is to imitate Yacc’s output file name conventions. Thus, the following shell
script can substitute for Yacc:

bison -y $*



Chapter 9: Invoking Bison 77

9.2 Option Cross Key

Here is a list of options, alphabetized by long option, to help you find the corresponding
short option.

-=debug . . . . . . 0. L L e s s s e e e e e e e e e e st
-—defines . . . . . . . . . . 000 e d e e e e e e e e e s s =d
——file-prefix . . . . . . . . . . . . . . . .. . . 0. e ... b
--fixed-output-files . . . . . . . . . . . . . . . . . o 0.0 .. 0. Ty
==help . . . . . . . . . . . 00 00w e o . h
—--name-prefix . . . . . . . . . . . . . 0000 . 000w e e . .p
—-no-lines . . . . . . . . o 0 h e e e e e e e e e e e e e e e e e ]
—NO-PATSET .« .« + + 4 4 4 4 e e e et e e e e e e e e i e i e e .. . Th
-—output-file . . . . . . . . . . . . . ... . 0 0. e ... O
i - .
--token-table . . . . . . . . . . 0 o000 000 d s e s . =k
-=verbose . . . . . . . . 0 0000 e e s e e e e e e e e e e e e e .Y
S Y o~ o .
S - Y7 S

9.3 Invoking Bison under VMS

The command line syntax for Bison on VMS is a variant of the usual Bison command
syntax—adapted to fit VMS conventions.

To find the VMS equivalent for any Bison option, start with the long option, and sub-
stitute a ¢/’ for the leading ‘--’, and substitute a ‘_’ for each ‘=’ in the name of the long

option. For example, the following invocation under VMS:
bison /debug/name_prefix=bar foo.y

is equivalent to the following command under POSIX.
bison --debug --name-prefix=bar foo.y

The VMS file system does not permit filenames such as ‘foo.tab.c’. In the above
example, the output file would instead be named ‘foo_tab.c’.



78

Bison 1.25



Appendix A: Bison Symbols 79

Appendix A Bison Symbols

error A token name reserved for error recovery. This token may be used in grammar
rules so as to allow the Bison parser to recognize an error in the grammar
without halting the process. In effect, a sentence containing an error may be
recognized as valid. On a parse error, the token error becomes the current
look-ahead token. Actions corresponding to error are then executed, and the
look-ahead token is reset to the token that originally caused the violation. See
Chapter 6 [Error Recovery], page 67.

YYABORT  Macro to pretend that an unrecoverable syntax error has occurred, by making
yyparse return 1 immediately. The error reporting function yyerror is not
called. See Section 4.1 [The Parser Function yyparse], page 49.

YYACCEPT Macro to pretend that a complete utterance of the language has been read, by
making yyparse return 0 immediately. See Section 4.1 [The Parser Function

yyparse], page 49.

YYBACKUP Macro to discard a value from the parser stack and fake a look-ahead token.
See Section 4.4 [Special Features for Use in Actions], page 53.

YYERROR  Macro to pretend that a syntax error has just been detected: call yyerror and
then perform normal error recovery if possible (see Chapter 6 [Error Recovery],
page 67), or (if recovery is impossible) make yyparse return 1. See Chapter 6
[Error Recovery], page 67.

YYERROR_VERBOSE
Macro that you define with #define in the Bison declarations section to request
verbose, specific error message strings when yyerror is called.

YYINITDEPTH
Macro for specifying the initial size of the parser stack. See Section 5.8 [Stack
Overflow], page 65.

YYLEX_PARAM
Macro for specifying an extra argument (or list of extra arguments) for yyparse
to pass to yylex. See Section 4.2.4 [Calling Conventions for Pure Parsers],
page 51.

YYLTYPE  Macro for the data type of yylloc; a structure with four members. See Sec-
tion 4.2.3 [Textual Positions of Tokens], page 51.

yyltype  Default value for YYLTYPE.

YYMAXDEPTH
Macro for specifying the maximum size of the parser stack. See Section 5.8
[Stack Overflow], page 65.

YYPARSE_PARAM
Macro for specifying the name of a parameter that yyparse should accept. See
Section 4.2.4 [Calling Conventions for Pure Parsers], page 51.



80

Bison 1.25

YYRECOVERING

YYSTYPE

yychar

yyclearin

yydebug

yyerrok

yyerror

yylex

yylval

yylloc

yynerrs

yyparse

%left

%no_lines

Macro whose value indicates whether the parser is recovering from a syntax
error. See Section 4.4 [Special Features for Use in Actions], page 53.

Macro for the data type of semantic values; int by default. See Section 3.5.1
[Data Types of Semantic Values], page 39.

External integer variable that contains the integer value of the current look-
ahead token. (In a pure parser, it is a local variable within yyparse.) Error-
recovery rule actions may examine this variable. See Section 4.4 [Special Fea-
tures for Use in Actions], page 53.

Macro used in error-recovery rule actions. It clears the previous look-ahead
token. See Chapter 6 [Error Recovery], page 67.

External integer variable set to zero by default. If yydebug is given a nonzero
value, the parser will output information on input symbols and parser action.
See Chapter 8 [Debugging Your Parser], page 73.

Macro to cause parser to recover immediately to its normal mode after a parse
error. See Chapter 6 [Error Recovery], page 67.

User-supplied function to be called by yyparse on error. The function receives
one argument, a pointer to a character string containing an error message. See
Section 4.3 [The Error Reporting Function yyerror]|, page 53.

User-supplied lexical analyzer function, called with no arguments to get the
next token. See Section 4.2 [The Lexical Analyzer Function yylex], page 49.

External variable in which yylex should place the semantic value associated
with a token. (In a pure parser, it is a local variable within yyparse, and its
address is passed to yylex.) See Section 4.2.2 [Semantic Values of Tokens],
page 50.

External variable in which yylex should place the line and column numbers
associated with a token. (In a pure parser, it is a local variable within yyparse,
and its address is passed to yylex.) You can ignore this variable if you don’t
use the ‘@ feature in the grammar actions. See Section 4.2.3 [Textual Positions
of Tokens], page 51.

Global variable which Bison increments each time there is a parse error. (In a
pure parser, it is a local variable within yyparse.) See Section 4.3 [The Error
Reporting Function yyerror], page 53.

The parser function produced by Bison; call this function to start parsing. See
Section 4.1 [The Parser Function yyparse], page 49.

Bison declaration to assign left associativity to token(s). See Section 3.6.2
[Operator Precedence], page 44.

Bison declaration to avoid generating #line directives in the parser file. See
Section 3.6.8 [Decl Summary], page 47.



Appendix A: Bison Symbols 81

%nonassoc

hprec

Bison declaration to assign nonassociativity to token(s). See Section 3.6.2 [Op-
erator Precedence], page 44.

Bison declaration to assign a precedence to a specific rule. See Section 5.4
[Context-Dependent Precedence], page 61.

hpure_parser

Y%raw

hright

Y%start

%token

Bison declaration to request a pure (reentrant) parser. See Section 3.6.7 [A
Pure (Reentrant) Parser], page 46.

Bison declaration to use Bison internal token code numbers in token tables
instead of the usual Yacc-compatible token code numbers. See Section 3.6.8
[Decl Summary], page 47.

Bison declaration to assign right associativity to token(s). See Section 3.6.2
[Operator Precedence], page 44.

Bison declaration to specify the start symbol. See Section 3.6.6 [The Start-
Symbol], page 46.

Bison declaration to declare token(s) without specifying precedence. See Sec-
tion 3.6.1 [Token Type Names], page 44.

%token_table

htype

%union

Bison declaration to include a token name table in the parser file. See Sec-
tion 3.6.8 [Decl Summary], page 47.

Bison declaration to declare nonterminals. See Section 3.6.4 [Nonterminal Sym-
bols], page 45.

Bison declaration to specify several possible data types for semantic values. See
Section 3.6.3 [The Collection of Value Types], page 45.

These are the punctuation and delimiters used in Bison input:

L%%?
SRy
k]

Delimiter used to separate the grammar rule section from the Bison declarations
section or the additional C code section. See Section 1.7 [The Overall Layout
of a Bison Grammar], page 17.

All code listed between ‘%{’ and ‘%}’ is copied directly to the output file unin-
terpreted. Such code forms the “C declarations” section of the input file. See
Section 3.1 [Outline of a Bison Grammar], page 35.

Comment delimiters, as in C.

Separates a rule’s result from its components. See Section 3.3 [Syntax of Gram-
mar Rules], page 37.

Terminates a rule. See Section 3.3 [Syntax of Grammar Rules], page 37.

Separates alternate rules for the same result nonterminal. See Section 3.3 [Syn-
tax of Grammar Rules], page 37.



82

Bison 1.25



Appendix B: Glossary 83

Appendix B Glossary

Backus-Naur Form (BNF)
Formal method of specifying context-free grammars. BNFE was first used in
the ALGOL-60 report, 1963. See Section 1.1 [Languages and Context-Free
Grammars|, page 13.

Context-free grammars
Grammars specified as rules that can be applied regardless of context. Thus, if
there is a rule which says that an integer can be used as an expression, integers
are allowed anywhere an expression is permitted. See Section 1.1 [Languages
and Context-Free Grammars], page 13.

Dynamic allocation
Allocation of memory that occurs during execution, rather than at compile time
or on entry to a function.

Empty string
Analogous to the empty set in set theory, the empty string is a character string
of length zero.

Finite-state stack machine
A “machine” that has discrete states in which it is said to exist at each instant
in time. As input to the machine is processed, the machine moves from state
to state as specified by the logic of the machine. In the case of the parser, the
input is the language being parsed, and the states correspond to various stages
in the grammar rules. See Chapter 5 [The Bison Parser Algorithm ], page 57.

Grouping A language construct that is (in general) grammatically divisible; for example,
‘expression’ or ‘declaration’ in C. See Section 1.1 [Languages and Context-Free
Grammars|, page 13.

Infix operator
An arithmetic operator that is placed between the operands on which it per-
forms some operation.

Input stream
A continuous flow of data between devices or programs.

Language construct
One of the typical usage schemas of the language. For example, one of the
constructs of the C language is the if statement. See Section 1.1 [Languages
and Context-Free Grammars], page 13.

Left associativity
Operators having left associativity are analyzed from left to right: ‘a+b+c’
first computes ‘a+b’ and then combines with ‘c’. See Section 5.3 [Operator
Precedence], page 59.

Left recursion
A rule whose result symbol is also its first component symbol; for example,
‘expseql : expseql ’,’ exp;’. See Section 3.4 [Recursive Rules], page 38.



84 Bison 1.25

Left-to-right parsing
Parsing a sentence of a language by analyzing it token by token from left to
right. See Chapter 5 [The Bison Parser Algorithm ], page 57.

Lexical analyzer (scanner)
A function that reads an input stream and returns tokens one by one. See
Section 4.2 [The Lexical Analyzer Function yylex], page 49.

Lexical tie-in
A flag, set by actions in the grammar rules, which alters the way tokens are
parsed. See Section 7.2 [Lexical Tie-ins], page 70.

Literal string token
A token which constists of two or more fixed characters. See Section 3.2 [Sym-
bols], page 36.

Look-ahead token
A token already read but not yet shifted. See Section 5.1 [Look-Ahead Tokens],
page 57.

LALR(1) The class of context-free grammars that Bison (like most other parser genera-
tors) can handle; a subset of LR(1). See Section 5.7 [Mysterious Reduce/Reduce
Conflicts], page 64.

LR(1) The class of context-free grammars in which at most one token of look-ahead
is needed to disambiguate the parsing of any piece of input.

Nonterminal symbol
A grammar symbol standing for a grammatical construct that can be expressed
through rules in terms of smaller constructs; in other words, a construct that
is not a token. See Section 3.2 [Symbols], page 36.

Parse error
An error encountered during parsing of an input stream due to invalid syntax.
See Chapter 6 [Error Recovery], page 67.

Parser A function that recognizes valid sentences of a language by analyzing the syntax
structure of a set of tokens passed to it from a lexical analyzer.

Postfix operator
An arithmetic operator that is placed after the operands upon which it performs
some operation.

Reduction Replacing a string of nonterminals and/or terminals with a single nonterminal,
according to a grammar rule. See Chapter 5 [The Bison Parser Algorithm |,
page 57.

Reentrant A reentrant subprogram is a subprogram which can be in invoked any number
of times in parallel, without interference between the various invocations. See
Section 3.6.7 [A Pure (Reentrant) Parser], page 46.

Reverse polish notation
A language in which all operators are postfix operators.



Appendix B: Glossary 85

Right recursion
A rule whose result symbol is also its last component symbol; for example,
‘expseql: exp ’,’ expseql;’. See Section 3.4 [Recursive Rules], page 38.

Semantics In computer languages, the semantics are specified by the actions taken for each
instance of the language, i.e., the meaning of each statement. See Section 3.5
[Defining Language Semantics], page 39.

Shift A parser is said to shift when it makes the choice of analyzing further input from
the stream rather than reducing immediately some already-recognized rule. See
Chapter 5 [The Bison Parser Algorithm ], page 57.

Single-character literal
A single character that is recognized and interpreted as is. See Section 1.2
[From Formal Rules to Bison Input], page 14.

Start symbol
The nonterminal symbol that stands for a complete valid utterance in the lan-
guage being parsed. The start symbol is usually listed as the first nontermi-
nal symbol in a language specification. See Section 3.6.6 [The Start-Symbol],
page 46.

Symbol table
A data structure where symbol names and associated data are stored during
parsing to allow for recognition and use of existing information in repeated uses
of a symbol. See Section 2.4 [Multi-function Calc], page 27.

Token A basic, grammatically indivisible unit of a language. The symbol that describes
a token in the grammar is a terminal symbol. The input of the Bison parser
is a stream of tokens which comes from the lexical analyzer. See Section 3.2
[Symbols], page 36.

Terminal symbol
A grammar symbol that has no rules in the grammar and therefore is gram-
matically indivisible. The piece of text it represents is a token. See Section 1.1
[Languages and Context-Free Grammars], page 13.



86

Bison 1.25



Index

B 40
. 40
%

hEXPECE .t 46
/2 60
AONASSOC .. oottt e e 60
ADTEC . et 61
APULE PATSET .ottt e 46
hright ... . 60
hSTATL .. 46
A )Y+ 44
hEYDe . 45
HUNION .. v ot 45

ACHIOTL . vttt e 40
action data types.................. . 41
action features summary....................... 53
actions in mid-rule. ......... ... ... oL 41
actions, semantic ................. ... ..., 15
additional C code section...................... 36
algorithm of parser............................ 57
associativity . ... 60

B

Backus-Naur form ............................. 13
Bison declaration summary .................... 47
Bison declarations . ............................ 43
Bison declarations (introduction) .............. 35
Bison grammar................ ... L 14
Bison invocation. ........... ... 75
Bison parser................... ..., 16
Bison parser algorithm......................... 57
Bison symbols, table of ........................ 79
Bison utility . ................ .. ... 16

87
C
C code, section for additional .................. 36
C declarations section ......................... 35
C-language interface........................... 49
calc .. 25
calculator, infix notation....................... 25
calculator, multi-function . ..................... 27
calculator, simple. ............................. 19
character token................. . ... ... 36
compiling the parser........................... 24
conflicts . ... 58
conflicts, reduce/reduce. ....................... 62
conflicts, suppressing warnings of .............. 46
context-dependent precedence.................. 61
context-free grammar.......................... 13
controlling function. ........................... 23
D
dangling else ......... ... i 58
data types in actions ................cooiinnn.. 41
data types of semantic values.................. 39
debugging . .......... ... 73
declaration summary .......................... 47
declarations, Bison ............................ 43
declarations, Bison (introduction).............. 35
declarations, C................................ 35
declaring literal string tokens .................. 44
declaring operator precedence.................. 44
declaring the start symbol ..................... 46
declaring token type names.................... 44
declaring value types ................. .. ... 45
declaring value types, nonterminals ............ 45
default action ............. .. ... ... 40
default data type.............................. 39
default stack limit.......................... ... 65
default start symbol . .......................... 46
defining language semantics.................... 39
E
else,dangling. ........... ... i 58
1< o o o 67
ETTOT TECOVETY oottt e teeet e aeee e 67
error recovery, simple.......................... 26
error reporting function. ....................... 53
error reporting routine. ...................... .. 23
examples, simple ............... .. ... 19
EXETCISES . vttt et ettt 33



88

F

file format......... ... .. 17
finite-state machine. .................. ... . ... 62
formal grammar........................ ... 14
format of grammar file......................... 17
G

glossary . ... 83
grammar file. ........ ... ... .. 17
grammar rule syntax .............. ... ... 37
grammar rules section ......................... 35
grammar, Bison .............. ... ... 14
grammar, context-free ......................... 13
grouping, syntactic ..................oiiiia 13
I

infix notation calculator ....................... 25
interface. ..... ... 49
introduction . ........... ... i 1
invoking Bison................. ... 75
invoking Bison under VMS .................... 77
L

LALR(L) .o 64
language semantics, defining . .................. 39
layout of Bison grammar. ...................... 17
left recursion . ............. 38
lexical analyzer................................ 49
lexical analyzer, purpose....................... 16
lexical analyzer, writing. ....................... 22
lexical tie-in.......... .. .o i 70
literal string token............................. 37
literal token ......... ... .. . .. 36
look-ahead token ................... ... . ... 57
LR(L) oo 64
M

main function in simple example............... 23
mfcalc . ... 27
mid-rule actions . ........... ... 41
multi-character literal. ......................... 37
multi-function calculator. ...................... 27
mutual recursion ......... ... ... 39
N

nonterminal symbol. ........................... 36

O

operator precedence ................ ..., 59

Bison 1.25

operator precedence, declaring . ................ 44
options for invoking Bison ..................... 75
overflow of parser stack........................ 65
P

PATSE ETTOT .ottt et et et e e 53
PATSET .« oottt e e e e e e e 16
parser stack ........ .. 57
parser stack overflow........................... 65
parser state............ . 62
polish notation calculator...................... 19
precedence declarations. ....................... 44
precedence of operators. ....................... 59
precedence, context-dependent . ................ 61
precedence, unary operator .................... 61
preventing warnings about conflicts............ 46
PUTE PATSET . . o vttt et e e e e et e e e 46
R

recovery from errors................ ... ... 67
recursive rule. ........ .. 38
reduce/reduce conflict ......................... 62
reduction. ... 57
reentrant Parser . ... ...t 46
reverse polish notation......................... 19
right recursion. ..., 38
rpcalc . ... 19
rule Syntax . ... 37
rules section for grammar...................... 35
running Bison (introduction)................... 24
S

semantic actions...............evuvuineeneann.. 15
semantic value............... ... .l 15
semantic value type............................ 39
shift /reduce conflicts .......................... 58
shifting. .......... . 57
simple examples . ............00 i 19
single-character literal . ........................ 36
stack overflow .......... .. ... i 65
stack, parser. ......... .. 57
stages in using Bison ................ ... ... 17
start symbol. ... ... ... ... 14
start symbol, declaring ..................... ... 46
state (of parser).............. .. ... .. 62
string token ......... 37
summary, action features ...................... 53
summary, Bison declaration. ................... 47
suppressing conflict warnings .................. 46
symbol . ... ... . 36



Index

symbol table example.......................... 29
symbols (abstract)..................... ... 13
symbols in Bison, table of...................... 79
Syntactic grouping . ...........vvevuuineeeeann.. 13
SYNEAX €TTOT ..ottt et e e e 53
syntax of grammar rules....................... 37
T

terminal symbol .................. ... 36
tOKen. ... 13
token type. ... 36
token type names, declaring ................... 44
tracing the parser.............................. 73
U

unary operator precedence..................... 61
using Bison. ... 17
\Va

value type, semantic........................... 39
value types, declaring. ......................... 45
value types, nonterminals, declaring............ 45
value, semantic............... .. ... .. 15
VM S 77
W

89
writing a lexical analyzer ...................... 22
Y
YYABORT ...ttt 49
YYACCEPT ...t 49
YYBACKUP ...ttt 54
yychar ........ .. ... 58
yyclearin............. ... o il 68
yydebug ... 73
YYDEBUG ..ottt 73
YYEMPTY ..ottt 54
FYELTOK ..ot e 68
BT o 3 53
YYERROR ..o 54
YYERRORVERBOSE ... 53
YYINITDEPTH...........ooiiiiiiiin.. 65
yylex ..o 49
YYLEX PARAM . ... 52
yylloc ... 51
YYLTYPE ... 51
yylval ... 50
YYMAXDEPTH.. ... ...ttt 65
04T = 53
FYPALSE ottt e 49
YYPARSE PARAM............. ...t 52
YYPRINT ...ttt 73
YYRECOVERING............oooviiiiiiiiian, 68



90

Bison 1.25



Table of Contents

Introduction.............. ..., 1

Conditions for Using Bison .................... 3

GNU GENERAL PUBLIC LICENSE .......... 5

Preamble. ... ... 5
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION

AND MODIFICATION ... 6

How to Apply These Terms to Your New Programs............ 10

1 The ConceptsofBison.................... 13

1.1 Languages and Context-Free Grammars.................. 13

1.2 From Formal Rules to Bison Input....................... 14

1.3 Semantic Values........... ... oo 15

1.4 Semantic Actions...........oo i 15

1.5 Bison Output: the Parser File........................... 16

1.6 Stagesin Using Bison.................cooiiiii ... 17

1.7 The Overall Layout of a Bison Grammar................. 17

2 Examples .......coiiiiiiiiiiiiiiiiiia. 19

2.1 Reverse Polish Notation Calculator ...................... 19

2.1.1 Declarations for rpcalc..........coovenn..... 19

2.1.2  Grammar Rules for rpcalc..................... 20

2.1.2.1 Explanation of input.................. 20

2.1.2.2 Explanation of line................... 21

2.1.2.3 Explanation of expr................... 21

2.1.3 The rpcalc Lexical Analyzer................... 22

2.1.4  The Controlling Function ...................... 23

2.1.5 The Error Reporting Routine................... 23

2.1.6  Running Bison to Make the Parser.............. 24

2.1.7 Compiling the Parser File...................... 24

2.2 Infix Notation Calculator: calc......................... 25

2.3 Simple Error Recovery........ ... oo 26

2.4 Multi-Function Calculator: mfcalc...................... 27

2.4.1 Declarations for mfcale................oo.... 27

2.4.2 Grammar Rules for mfcalc..................... 28

2.4.3 The mfcalc Symbol Table...................... 29

2.5 EXeICISES o et 33



ii

3 Bison Grammar Files ..................... 35
3.1 Outline of a Bison Grammar ............................ 35
3.1.1 The C Declarations Section..................... 35

3.1.2 The Bison Declarations Section . ................ 35

3.1.3 The Grammar Rules Section.................... 35

3.1.4 The Additional C Code Section ................. 36

3.2 Symbols, Terminal and Nonterminal ..................... 36
3.3 Syntax of Grammar Rules ............... ... . ... ..., 37
3.4 Recursive Rules....... ... o i 38
3.5 Defining Language Semantics ........................... 39
3.5.1 Data Types of Semantic Values................. 39

3.5.2 More Than One Value Type.................... 39

3.5.3 ACHiONS . oot 40

3.5.4 Data Types of Values in Actions ................ 41

3.5.5 Actionsin Mid-Rule ........... ... . ... .. ... 41

3.6 Bison Declarations .......... ... ... . 43
3.6.1 Token Type Names ......................o.... 44

3.6.2 Operator Precedence........................... 44

3.6.3 The Collection of Value Types.................. 45

3.6.4 Nonterminal Symbols .............. ... ... ... 45

3.6.5 Suppressing Conflict Warnings.................. 46

3.6.6 The Start-Symbol .......... ... ... .. .. 46

3.6.7 A Pure (Reentrant) Parser..................... 46

3.6.8 Bison Declaration Summary .................... 47

3.7 Multiple Parsers in the Same Program ................... 48
4 Parser C-Language Interface .............. 49
4.1 The Parser Function yyparse ..............oovviviioi... 49
4.2 The Lexical Analyzer Function yylex.................... 49
4.2.1 Calling Convention for yylex................... 49

4.2.2 Semantic Values of Tokens ..................... 50

4.2.3 Textual Positions of Tokens .................... 51

4.2.4 Calling Conventions for Pure Parsers............ 51

4.3 The Error Reporting Function yyerror.................. 53
4.4 Special Features for Use in Actions ...................... 53
5 The Bison Parser Algorithm............... 57
5.1 Look-Ahead Tokens ......... ... .. i, 57
5.2 Shift/Reduce Conflicts.............. .. ... ... ..., 58
5.3 Operator Precedence ............ ... ... i, 59
5.3.1 When Precedence is Needed .................... 59

5.3.2 Specifying Operator Precedence................. 60

5.3.3 Precedence Examples .......................... 60

5.3.4 How Precedence Works ........................ 60

5.4  Context-Dependent Precedence.......................... 61
5.5 Parser States ... 62

5.6 Reduce/Reduce Conflicts ............................... 62

Bison 1.25



5.7 Mysterious Reduce/Reduce Conflicts..................... 64
5.8 Stack Overflow, and How to Avoid It .................... 65
6 Error Recovery............coiiiiiiuina.. 67
7 Handling Context Dependencies........... 69
7.1 Semantic Info in Token Types................coiii. 69
7.2 Lexical Tie-ins ... 70
7.3 Lexical Tie-ins and Error Recovery ...................... 71
8 Debugging Your Parser ................... 73
9 Invoking Bison .................cvnn... 75
9.1 Bison Options. ...t 75
9.2 Option Cross Key . ... 77
9.3 Invoking Bison under VMS ............................. 77
Appendix A Bison Symbols................. 79
Appendix B Glossary ....................... 83

iii



iv

Bison 1.25



