Flex - a scanner generator Pagina 1 de 39

Flex, version 2.5
A fast scanner generator

Edition 2.5, March 1995

Vern Paxson

Copyright (C) 1990 The Regents of the University of California. All rights reserved.
This code is derived from software contributed to Berkeley by Vern Paxson.

The United States Government has rights in this work pursuant to contract no. DE-AC03-76SF00098
between the United States Department of Energy and the University of California.

Redistribution and use in source and binary forms are permitted provided that: (1) source distributions
retain this entire copyright notice and comment, and (2) distributions including binaries display the
following acknowledgement: "This product includes software developed by the University of California,
Berkeley and its contributors” in the documentation or other materials provided with the distribution and
in all advertising materials mentioning features or use of this software. Neither the name of the
University nor the names of its contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Name
flex - fast lexical analyzer generator

Synopsis

flex [-bcdfhil npstvwBFI LTV78+? -(C[aef Fnt] -oout put -Pprefix -Sskel eton]
[--help --version] [filenane ...]

Overview

This manual describes f | ex, a tool for generating programs that perform pattern-matching on text. The
manual includes both tutorial and reference sections:

Description
a brief overview of the tool
Some Simple Examples
Format Of The Input File
Patterns
the extended regular expressions used by flex

http://www.cs.princeton.edu/~appel/modern/c/software/flex/flex.html 07/03/2002

Flex - a scanner generator Pagina 2 de 39

How The Input Is Matched
the rules for determining what has been matched
Actions
how to specify what to do when a pattern is matched
The Generated Scanner
details regarding the scanner that flex produces; how to control the input source
Start Conditions
introducing context into your scanners, and managing "mini-scanners"
Multiple Input Buffers
how to manipulate multiple input sources; how to scan from strings instead of files
End-of-file Rules
special rules for matching the end of the input
Miscellaneous Macros
a summary of macros available to the actions
Values Available To The User
a summary of values available to the actions
Interfacing With Yacc
connecting flex scanners together with yacc parsers
Options
flex command-line options, and the "%option" directive
Performance Considerations
how to make your scanner go as fast as possible
Generating C++ Scanners
the (experimental) facility for generating C++ scanner classes
Incompatibilities With Lex And POSIX
how flex differs from AT&T lex and the POSIX lex standard
Diagnostics
those error messages produced by flex (or scanners it generates) whose meanings might not be
apparent
Files files used by flex
Deficiencies / Bugs
known problems with flex
See Also
other documentation, related tools
Author
includes contact information

Description

f 1 ex is a tool for generating scanners: programs which recognized lexical patterns in text. f I ex reads
the given input files, or its standard input if no file names are given, for a description of a scanner to
generate. The description is in the form of pairs of regular expressions and C code, called rules. f I ex
generates as output a C source file, * 1 ex. yy. c' , which defines a routine “ yyl ex()' . This file is
compiled and linked with the - 111" library to produce an executable. When the executable is run, it
analyzes its input for occurrences of the regular expressions. Whenever it finds one, it executes the
corresponding C code.

Some simple examples

First some simple examples to get the flavor of how one uses f | ex. The following f | ex input specifies a
scanner which whenever it encounters the string "username™ will replace it with the user's login name:

http://www.cs.princeton.edu/~appel/modern/c/software/flex/flex.html 07/03/2002

Flex - a scanner generator Pagina 3 de 39

L)
user name printf("%", getlogin());

By default, any text not matched by af | ex scanner is copied to the output, so the net effect of this
scanner is to copy its input file to its output with each occurrence of "username" expanded. In this input,
there is just one rule. "username™ is the pattern and the "printf" is the action. The "%%" marks the
beginning of the rules.

Here's another simple example:

int numlines = 0, numchars = 0;

9%

\n ++num | i nes; ++num chars;
++num chars;

9%

mai n()

yylex(); _
printf("# of lines = %, # of chars = %\ n",

numlines, numchars);
}

This scanner counts the number of characters and the number of lines in its input (it produces no output
other than the final report on the counts). The first line declares two globals, "num_lines" and
"num_chars", which are accessible both inside “yyl ex()" and in the * mai n() " routine declared after the
second "%%". There are two rules, one which matches a newline (*\n™) and increments both the line
count and the character count, and one which matches any character other than a newline (indicated by
the "." regular expression).

A somewhat more complicated example:

/* scanner for a toy Pascal -1ike |anguage */

A
/* need this for the call to atof() bel ow */
#i ncl ude <math. h>

%

DAT [0-9]

I D [a-z][a-2z0-9] *
9

{DIA T} + {
printf("An integer: % (%)\n", yytext,
atoi (yytext));
}

{DAT}+"."{DIAT}* {
printf("Afloat: % (%)\n", yytext,
atof (yytext));
}

i f|then| begi n| end| procedure| function {
printf("A keyword: %\n", yytext);

{1D} printf("An identifier: %\n", yytext);

Tt printf("An operator: %\n", yytext);

http://www.cs.princeton.edu/~appel/modern/c/software/flex/flex.html 07/03/2002

Flex - a scanner generator Pagina 4 de 39

“{"[~}\n]*"} /* eat up one-line coments */
[\t\n]+ /* eat up whitespace */

printf("Unrecognized character: %\n", yytext);

%%
mai n(argc, argv)
int argc;
char **argv;
{
++argv, --argc; [/* skip over program nane */

if (argc > 0)

yyin = fopen(argv[O], "r");
el se

yyin = stdin;

yyl ex();
}

This is the beginnings of a simple scanner for a language like Pascal. It identifies different types of
tokens and reports on what it has seen.

The details of this example will be explained in the following sections.

Format of the input file

The f 1 ex input file consists of three sections, separated by a line with just* %86 in it:

definitions
%%

rul es

%%

user code

The definitions section contains declarations of simple name definitions to simplify the scanner
specification, and declarations of start conditions, which are explained in a later section. Name
definitions have the form:

nane definition

The "name" is a word beginning with a letter or an underscore ('_") followed by zero or more letters,
digits, ' ', or '-' (dash). The definition is taken to begin at the first non-white-space character following
the name and continuing to the end of the line. The definition can subsequently be referred to using
"{name}", which will expand to "(definition)". For example,

DAT [0-9]
I D [a-z][a-2z0-9] *

defines "DIGIT" to be a regular expression which matches a single digit, and "ID" to be a regular
expression which matches a letter followed by zero-or-more letters-or-digits. A subsequent reference to

(DA T}+"."{DIG T}*
is identical to

([0-9])+"."([0-9])*

http://www.cs.princeton.edu/~appel/modern/c/software/flex/flex.html 07/03/2002

Flex - a scanner generator Pagina 5 de 39

and matches one-or-more digits followed by a "' followed by zero-or-more digits.

The rules section of the f I ex input contains a series of rules of the form:

pattern action
where the pattern must be unindented and the action must begin on the same line.
See below for a further description of patterns and actions.

Finally, the user code section is simply copied to " I ex. yy. ¢c' verbatim. It is used for companion routines
which call or are called by the scanner. The presence of this section is optional; if it is missing, the
second * %86 in the input file may be skipped, too.

In the definitions and rules sections, any indented text or text enclosed in ~ %' and "% ' is copied
verbatim to the output (with the * %4} 's removed). The * %} ' 's must appear unindented on lines by
themselves.

In the rules section, any indented or %{} text appearing before the first rule may be used to declare
variables which are local to the scanning routine and (after the declarations) code which is to be executed
whenever the scanning routine is entered. Other indented or %{} text in the rule section is still copied to
the output, but its meaning is not well-defined and it may well cause compile-time errors (this feature is
present for Posl X compliance; see below for other such features).

In the definitions section (but not in the rules section), an unindented comment (i.e., a line beginning
with "/*") is also copied verbatim to the output up to the next "*/".

Patterns

The patterns in the input are written using an extended set of regular expressions. These are:

*x' match the character " x'
any character (byte) except newline
“Ixyz]”
a "character class™; in this case, the pattern matches eitheran"x' ,a y',ora" z'
“[abj-0Z]"
a "character class" with a range in it; matches an~a' ,a " b', any letter from " j' through o', ora
“ 2
[AA-Z)"
a "negated character class", i.e., any character but those in the class. In this case, any character
EXCEPT an uppercase letter.
“[MA-Z\N]Y
any character EXCEPT an uppercase letter or a newline
“r*' zero or more r's, where r is any regular expression
‘r+' 0oneormorer's
“r?' zerooroner's (that is, "an optional r")
“r{2, 5}
anywhere from two to five r's
r{2,}
two or more r's

r{ay

http://www.cs.princeton.edu/~appel/modern/c/software/flex/flex.html 07/03/2002

Flex - a scanner generator Pagina 6 de 39

exactly 4 r's

“{nanme}’
the expansion of the "name" definition (see above)

[xyz]\"foo"'
the literal string: " [xyz] " f oo’

\x' ifxisana', b, f',"n", r', t",or v',then the ANSI-C interpretation of \x. Otherwise, a
literal * x' (used to escape operators such as " *')

"\ 0' aNUL character (ASCII code 0)

"\ 123
the character with octal value 123

"\ x2a'
the character with hexadecimal value 2a

(r)’
match an r; parentheses are used to override precedence (see below)

“rs' the regular expression r followed by the regular expression s; called "concatenation”

“r] s
eitheranrorans

“rls'
an r but only if it is followed by an s. The text matched by s is included when determining whether
this rule is the longest match, but is then returned to the input before the action is executed. So the
action only sees the text matched by r. This type of pattern is called trailing context. (There are
some combinations of “r/s' that f | ex cannot match correctly; see notes in the Deficiencies / Bugs
section below regarding "dangerous trailing context".)

*Ar'oanr, but only at the beginning of a line (i.e., which just starting to scan, or right after a newline has
been scanned).

“r$' anr, but only at the end of a line (i.e., just before a newline). Equivalent to "r/An". Note that flex's
notion of "newline" is exactly whatever the C compiler used to compile flex interprets \n' as; in
particular, on some DOS systems you must either filter out \r's in the input yourself, or explicitly
use r/\r\n for "r$".

T<s>r!
an r, but only in start condition s (see below for discussion of start conditions) <s1,s2,s3>r same,
but in any of start conditions s1, s2, or s3

Tx>r!
an r in any start condition, even an exclusive one.

T <<EOF>>'
an end-of-file <s1,s2><<EOF>> an end-of-file when in start condition s1 or s2

Note that inside of a character class, all regular expression operators lose their special meaning except
escape ('\') and the character class operators, -, ', and, at the beginning of the class, "',

The regular expressions listed above are grouped according to precedence, from highest precedence at
the top to lowest at the bottom. Those grouped together have equal precedence. For example,

f oo| bar *
is the same as

(foo)| (ba(r*))
since the "*' operator has higher precedence than concatenation, and concatenation higher than alternation

(). This pattern therefore matches either the string "foo™ or the string "ba" followed by zero-or-more r's.
To match "foo™ or zero-or-more "bar''s, use:

foo| (bar)*

http://www.cs.princeton.edu/~appel/modern/c/software/flex/flex.html 07/03/2002

Flex - a scanner generator Pagina 7 de 39

and to match zero-or-more "foo™'s-or-"bar™s:

(foo| bar)*

In addition to characters and ranges of characters, character classes can also contain character class
expressions. These are expressions enclosed inside “[' :and " : '] delimiters (which themselves must
appear between the [' and ']’ of the character class; other elements may occur inside the character class,
too). The valid expressions are:

[:alnum] [:al pha:] [:blank:]
[:entrl:] [:digit:] [:graph:]
[:lower:] [:print:] [:punct:]
[:space:] [:upper:] [:xdigit:]

These expressions all designate a set of characters equivalent to the corresponding standard C " i sXxx
function. For example, *[: al num]' designates those characters for which *i sal nun()' returns true -
i.e., any alphabetic or numeric. Some systems don't provide * i sbl ank() ', so flex defines * [: bl ank:]"
as a blank or a tab.

For example, the following character classes are all equivalent:

[[:alnum]]

[[alpha:][:digit:]
[[:al pha:]0-9]
[a

If your scanner is case-insensitive (the ™ -i' flag), then " [: upper:]' and "[: 1 ower:]"' are equivalent to
“[:al pha:]".

Some notes on patterns:

¢ A negated character class such as the example "[*A-Z]" above will match a newline unless "\n" (or
an equivalent escape sequence) is one of the characters explicitly present in the negated character
class (e.g., "["A-Z\n]"). This is unlike how many other regular expression tools treat negated
character classes, but unfortunately the inconsistency is historically entrenched. Matching newlines
means that a pattern like ["]* can match the entire input unless there's another quote in the input.

o Arrule can have at most one instance of trailing context (the '/' operator or the '$' operator). The
start condition, "', and "<<EOF>>" patterns can only occur at the beginning of a pattern, and, as
well as with '/* and '$', cannot be grouped inside parentheses. A A" which does not occur at the
beginning of a rule or a '$' which does not occur at the end of a rule loses its special properties and
is treated as a normal character. The following are illegal:

f oo/ bar$
<scl1l>f oo<sc2>bar

Note that the first of these, can be written "foo/bar\n". The following will result in '$' or A" being
treated as a normal character:

f oo| (bar $)
f oo| “bar

If what's wanted is a "foo" or a bar-followed-by-a-newline, the following could be used (the special
'|"action is explained below):

foo |

http://www.cs.princeton.edu/~appel/modern/c/software/flex/flex.html 07/03/2002

Flex - a scanner generator Pagina 8 de 39

bar $ /* action goes here */

A similar trick will work for matching a foo or a bar-at-the-beginning-of-a-line.

How the input is matched

When the generated scanner is run, it analyzes its input looking for strings which match any of its
patterns. If it finds more than one match, it takes the one matching the most text (for trailing context
rules, this includes the length of the trailing part, even though it will then be returned to the input). If it
finds two or more matches of the same length, the rule listed first in the f | ex input file is chosen.

Once the match is determined, the text corresponding to the match (called the token) is made available in
the global character pointer yyt ext , and its length in the global integer yyl eng. The action
corresponding to the matched pattern is then executed (a more detailed description of actions follows),
and then the remaining input is scanned for another match.

If no match is found, then the default rule is executed: the next character in the input is considered
matched and copied to the standard output. Thus, the simplest legal f | ex input is:

9%
which generates a scanner that simply copies its input (one character at a time) to its output.

Note that yyt ext can be defined in two different ways: either as a character pointer or as a character
array. You can control which definition f I ex uses by including one of the special directives* %poi nt er"
or “varray' in the first (definitions) section of your flex input. The default is* %poi nter' , unless you
use the * -1 lex compatibility option, in which case yyt ext will be an array. The advantage of using" %
poi nt er' is substantially faster scanning and no buffer overflow when matching very large tokens
(unless you run out of dynamic memory). The disadvantage is that you are restricted in how your actions
can modify yyt ext (See the next section), and calls to the * unput () function destroys the present
contents of yyt ext , which can be a considerable porting headache when moving between different| ex
versions.

The advantage of * %ar ray' is that you can then modify yyt ext to your heart's content, and calls to
“unput () do not destroy yyt ext (see below). Furthermore, existing | ex programs sometimes access
yyt ext externally using declarations of the form:

extern char yytext[];
This definition is erroneous when used with ~ %poi nt er' , but correct for * varray' .

“varray' definesyytext to be an array of YYLMAX characters, which defaults to a fairly large value. You
can change the size by simply #define'ing YYLMAX to a different value in the first section of your f | ex
input. As mentioned above, with * %poi nter' yytext grows dynamically to accommodate large tokens.
While this means your * %poi nt er' scanner can accommodate very large tokens (such as matching entire
blocks of comments), bear in mind that each time the scanner must resize yyt ext it also must rescan the
entire token from the beginning, so matching such tokens can prove slow. yyt ext presently does not
dynamically grow if a call to ™ unput () results in too much text being pushed back; instead, a run-time
error results.

Also note that you cannot use " %ar r ay' with C++ scanner classes (the c++ option; see below).

http://www.cs.princeton.edu/~appel/modern/c/software/flex/flex.html 07/03/2002

Flex - a scanner generator Pagina 9 de 39

Actions

Each pattern in a rule has a corresponding action, which can be any arbitrary C statement. The pattern
ends at the first non-escaped whitespace character; the remainder of the line is its action. If the action is
empty, then when the pattern is matched the input token is simply discarded. For example, here is the
specification for a program which deletes all occurrences of "zap me" from its input:

%0
"zap me"

(1t will copy all other characters in the input to the output since they will be matched by the default rule.)

Here is a program which compresses multiple blanks and tabs down to a single blank, and throws away
whitespace found at the end of a line:

%%
[\Vt]+ putchar(' ');
[\t]+$ /* ignore this token */

If the action contains a '{’, then the action spans till the balancing '}' is found, and the action may cross
multiple lines. f1 ex knows about C strings and comments and won't be fooled by braces found within

them, but also allows actions to begin with * o' and will consider the action to be all the text up to the
next *og' (regardless of ordinary braces inside the action).

An action consisting solely of a vertical bar ('|') means "same as the action for the next rule." See below
for an illustration.

Actions can include arbitrary C code, includingr et ur n statements to return a value to whatever routine
called “yyl ex()' . Each time ~yyl ex()"' is called it continues processing tokens from where it last left
off until it either reaches the end of the file or executes a return.

Actions are free to modify yyt ext except for lengthening it (adding characters to its end--these will
overwrite later characters in the input stream). This however does not apply when using " varr ay' (see
above); in that case, yyt ext may be freely modified in any way.

Actions are free to modify yyl eng except they should not do so if the action also includes use of
“yynore()"' (see below).

There are a number of special directives which can be included within an action:

e “ECHO copies yytext to the scanner's output.

o BEG N followed by the name of a start condition places the scanner in the corresponding start
condition (see below).

e REJECT directs the scanner to proceed on to the "second best"” rule which matched the input (or a
prefix of the input). The rule is chosen as described above in "How the Input is Matched", and
yyt ext and yyl eng set up appropriately. It may either be one which matched as much text as the
originally chosen rule but came later in the f I ex input file, or one which matched less text. For
example, the following will both count the words in the input and call the routine special()
whenever "frob" is seen:

int word _count = O;
%%

http://www.cs.princeton.edu/~appel/modern/c/software/flex/flex.html 07/03/2002

Flex - a scanner generator Péagina 10 de 39

frob speci al (); REJECT,;
[~ \t\n]+ ++wor d_count ;

Without the REJECT, any "frob™s in the input would not be counted as words, since the scanner
normally executes only one action per token. Multiple REJECT' s are allowed, each one finding the
next best choice to the currently active rule. For example, when the following scanner scans the
token "abcd", it will write "abcdabcaba” to the output:

9%

a |

ab |

abc |

abcd ECHO, REJECT;

.]\n /* eat up any unnatched character */

(The first three rules share the fourth's action since they use the special '|' action.) REJECT is a
particularly expensive feature in terms of scanner performance; if it is used inany of the scanner's
actions it will slow down all of the scanner's matching. Furthermore, REJECT cannot be used with
the - or - CF options (see below). Note also that unlike the other special actions, REJECT is a
branch; code immediately following it in the action will not be executed.

e “yynore()' tellsthe scanner that the next time it matches a rule, the corresponding token should
be appended onto the current value of yyt ext rather than replacing it. For example, given the
input "mega-kludge" the following will write "mega-mega-kludge" to the output:

9%
mega- ECHO, yynore();
kl udge ECHG,

First "mega-" is matched and echoed to the output. Then "kludge" is matched, but the previous
"mega-" is still hanging around at the beginning of yyt ext so the * ECHO for the "kludge" rule will
actually write "mega-kludge".

Two notes regarding use of * yynore() "' . First, *yynmore()' depends on the value of yyl eng correctly
reflecting the size of the current token, so you must not modify yyl eng if you are using * yynore()" .
Second, the presence of * yynore() " in the scanner's action entails a minor performance penalty in the
scanner's matching speed.

e “yyless(n)' returns all but the first n characters of the current token back to the input stream,
where they will be rescanned when the scanner looks for the next match. yyt ext and yyl eng are
adjusted appropriately (e.g., yyl eng will now be equal to n). For example, on the input "foobar"
the following will write out "foobarbar":

%0
f oobar ECHO, yyl ess(3);
[a-z]+ ECHO,

An argument of 0 to yyl ess will cause the entire current input string to be scanned again. Unless
you've changed how the scanner will subsequently process its input (using BEG N, for example),
this will result in an endless loop. Note that yy! ess is a macro and can only be used in the flex
input file, not from other source files.

e “unput (c)' puts the character ¢ back onto the input stream. It will be the next character scanned.
The following action will take the current token and cause it to be rescanned enclosed in
parentheses.

t
int i;
/* Copy yytext because unput() trashes yytext */

http://www.cs.princeton.edu/~appel/modern/c/software/flex/flex.html 07/03/2002

Flex - a scanner generator

Pagina 11 de 39

char *yycopy = strdup(yytext);

unput ()");

for (i =yyleng - 1; i >=0; --i)
unput (- yycopy[i]);

unput (" (");

free(yycopy');
}

Note that since each *unput ()' puts the given character back at the beginning of the input stream,
pushing back strings must be done back-to-front. An important potential problem when using
“unput () isthat if you are using ® %poi nt er' (the default), a call to “unput ()' destroys the
contents of yyt ext , starting with its rightmost character and devouring one character to the left
with each call. If you need the value of yytext preserved after a call to* unput ()* (as in the above
example), you must either first copy it elsewhere, or build your scanner using" %ar r ay' instead
(see How The Input Is Matched). Finally, note that you cannot put back EOF to attempt to mark the
input stream with an end-of-file.

“input () reads the next character from the input stream. For example, the following is one way
to eat up C comments:

9%
n/*n {
register int c;
for ()
{
while ((¢ =input()) !'="*" &&
c !'= ECF)
/* eat up text of coment */
if (c=="%*"")
L .
while ((¢ =input()) =="*")
if (¢c=="'1/"
br eak; /* found the end */
}
if (¢ == EOF)
error("EOF in coment");
br eak;
}
}
}

(Note that if the scanner is compiled using * C++' , then “i nput ()" is instead referred to as
“yyinput (), in order to avoid a name clash with the * c++' stream by the name of i nput .)

e YY_FLUSH_ BUFFER flushes the scanner's internal buffer so that the next time the scanner
attempts to match a token, it will first refill the buffer using YY_I NPUT (see The Generated
Scanner, below). This action is a special case of the more general *yy_f1 ush_buffer ()" function,
described below in the section Multiple Input Buffers.

e “yyterninate()' can be used in lieu of a return statement in an action. It terminates the scanner
and returns a 0 to the scanner's caller, indicating "all done". By default,” yyt erm nate()" is also
called when an end-of-file is encountered. It is a macro and may be redefined.

The generated scanner

The output of f | ex is the file * I ex. yy. ¢, which contains the scanning routine “yyl ex()"' , a number of
tables used by it for matching tokens, and a number of auxiliary routines and macros. By default,” yyl ex

()" is declared as follows:

http://www.cs.princeton.edu/~appel/modern/c/software/flex/flex.html

07/03/2002

Flex - a scanner generator Péagina 12 de 39

int yylex()
{

various definitions and the actions in here ..

(If your environment supports function prototypes, then it will be "int yylex(void)".) This definition may
be changed by defining the "YY_DECL" macro. For example, you could use:

#define YY_DECL float |lexscan(a, b) float a, b;

to give the scanning routine the name | exscan, returning a float, and taking two floats as arguments.
Note that if you give arguments to the scanning routine using a K&R-style/non-prototyped function
declaration, you must terminate the definition with a semi-colon (*;).

Whenever " yyl ex() "' is called, it scans tokens from the global input file yyi n (which defaults to stdin).
It continues until it either reaches an end-of-file (at which point it returns the value 0) or one of its
actions executes a r et ur n statement.

If the scanner reaches an end-of-file, subsequent calls are undefined unless eitheryyi n is pointed at a
new input file (in which case scanning continues from that file), or *yyrestart ()" is called.
“yyrestart()' takes one argument,a’ FI LE *' pointer (which can be nil, if you've set up YY_I NPUT to
scan from a source other than yyi n), and initializes yyi n for scanning from that file. Essentially there is
no difference between just assigning yyi n to a new input file or using “yyrestart ()' to do so; the latter
is available for compatibility with previous versions of f | ex, and because it can be used to switch input
files in the middle of scanning. It can also be used to throw away the current input buffer, by calling it
with an argument of yyi n; but better is to use YY_FLUSH BUFFER (see above). Note that * yyrestart ()"
does not reset the start condition to | NI TI AL (see Start Conditions, below).

If *yyl ex()' stops scanning due to executing ar et ur n statement in one of the actions, the scanner may
then be called again and it will resume scanning where it left off.

By default (and for purposes of efficiency), the scanner uses block-reads rather than simple” getc()"
calls to read characters fromyyi n. The nature of how it gets its input can be controlled by defining the
YY_I NPUT macro. YY_INPUT's calling sequence is "YY_INPUT (buf,result,max_size)". Its action is to
place up to max_size characters in the character array buf and return in the integer variable result either
the number of characters read or the constant YY_NULL (0 on Unix systems) to indicate EOF. The
default YY_INPUT reads from the global file-pointer "yyin".

A sample definition of YY_INPUT (in the definitions section of the input file):

%
#define YY_INPUT(buf,result, max_size) \

{\

int ¢ = getchar(); \

result = (¢ == EOF) ? YY_NULL : (buf[0] =¢c, 1); \
%}

This definition will change the input processing to occur one character at a time.

When the scanner receives an end-of-file indication from Y'Y _INPUT, it then checks the " yywr ap()"
function. If *yywr ap()' returns false (zero), then it is assumed that the function has gone ahead and set
up yyi n to point to another input file, and scanning continues. If it returns true (non-zero), then the
scanner terminates, returning 0 to its caller. Note that in either case, the start condition remains

http://www.cs.princeton.edu/~appel/modern/c/software/flex/flex.html 07/03/2002

Flex - a scanner generator Pagina 13 de 39

unchanged,; it does not revert to I NI TI AL.

If you do not supply your own version of > yywr ap() ', then you must either use " %opt i on
noyyw ap' (in which case the scanner behaves as though * yywrap()' returned 1), or you must link with
*-1fl1"' to obtain the default version of the routine, which always returns 1.

Three routines are available for scanning from in-memory buffers rather than files: " yy_scan_stri ng
()', yy_scan_bytes()',and yy _scan_buffer()"' . See the discussion of them below in the section
Multiple Input Buffers.

The scanner writes its * ECHO output to the yyout global (default, stdout), which may be redefined by
the user simply by assigning it to some other FI LE pointer.

Start conditions

f 1 ex provides a mechanism for conditionally activating rules. Any rule whose pattern is prefixed with
"<sc>" will only be active when the scanner is in the start condition named "sc”. For example,

<STRI NG["] * { /* eat up the string body ... */
will be active only when the scanner is in the "STRING" start condition, and

<I NI TI AL, STRI NG, QUOTE>\ . { /'* handle an escape ... */
}

will be active only when the current start condition is either "INITIAL", "STRING", or "QUOTE".

Start conditions are declared in the definitions (first) section of the input using unindented lines
beginning with either * o' or * %' followed by a list of names. The former declares inclusive start
conditions, the latter exclusive start conditions. A start condition is activated using the BEG N action.
Until the next BEG N action is executed, rules with the given start condition will be active and rules with
other start conditions will be inactive. If the start condition is inclusive, then rules with no start
conditions at all will also be active. If it is exclusive, then only rules qualified with the start condition will
be active. A set of rules contingent on the same exclusive start condition describe a scanner which is
independent of any of the other rules in the f | ex input. Because of this, exclusive start conditions make
it easy to specify "mini-scanners" which scan portions of the input that are syntactically different from
the rest (e.g., comments).

If the distinction between inclusive and exclusive start conditions is still a little vague, here's a simple
example illustrating the connection between the two. The set of rules:

% exanple
%

<exanpl e>f oo do_sonet hing();

bar sonet hi ng_el se();

is equivalent to

% exanpl e
9%

http://www.cs.princeton.edu/~appel/modern/c/software/flex/flex.html 07/03/2002

Flex - a scanner generator Pagina 14 de 39

<exanpl e>f oo do_sonet hing();

<I NI TI AL, exanpl e>bar sonet hi ng_el se();

Without the ~ <I NI TI AL, exanpl e>' qualifier, the ~bar' pattern in the second example wouldn't be
active (i.e., couldn't match) when in start condition * exanpl e' . If we just used * <exanpl e>' to qualify
“bar ', though, then it would only be active in* exanpl e’ and not in I NI TI AL, while in the first example
it's active in both, because in the first example the ~ exanpl e' starting condition is an inclusive (" %')
start condition.

Also note that the special start-condition specifier * <*>' matches every start condition. Thus, the above
example could also have been written;

% exanpl e
9

<exanpl e>f oo do_sonet hi ng() ;

<*>bar sonet hi ng_el se();

The default rule (to * ECHO any unmatched character) remains active in start conditions. It is equivalent
to:

<*> |\\n ECHO,

“BEG N(0)' returns to the original state where only the rules with no start conditions are active. This
state can also be referred to as the start-condition "INITIAL", S0 BEG N(I NI TI AL) ' is equivalent to
*BEG N(0) ' . (The parentheses around the start condition name are not required but are considered good
style.)

BEG Nactions can also be given as indented code at the beginning of the rules section. For example, the
following will cause the scanner to enter the "SPECIAL" start condition whenever " yyl ex() " is called
and the global variable ent er _speci al is true:

int enter_special;

% SPECI AL
9%
if (enter_special)
BEQ N(SPECI AL) ;

<SPECI AL>bl ahbl ahbl ah
...nmore rules follow...

To illustrate the uses of start conditions, here is a scanner which provides two different interpretations of
a string like "123.456". By default it will treat it as as three tokens, the integer "123", a dot ('."), and the
integer "456". But if the string is preceded earlier in the line by the string "expect-floats" it will treat it as
a single token, the floating-point number 123.456:

%

#i ncl ude <mat h. h>

%

% expect

9

expect-floats BEGQ N(expect);

<expect>[0-9]+"."[0-9] + {
printf("found a float, = %\n",

http://www.cs.princeton.edu/~appel/modern/c/software/flex/flex.html 07/03/2002

Flex - a scanner generator Péagina 15 de 39

atof (yytext));

}
<expect>\n
/* that's the end of the line, so
* we need anot her "expect-nunber"
* before we'll recognize any nore
* nunbers
*/

BEG N(I NI TI AL) ;
}

[0-9] + {
Version 2.5 Decenber 1994 18
printf("found an integer, = %\ n",
atoi (yytext));
}

printf("found a dot\n");

Here is a scanner which recognizes (and discards) C comments while maintaining a count of the current
input line.

0% comment

%

int line_num= 1;
tE BEGQ N(conment) ;
<coment >[A*\ n] * /* eat anything that's not a '*' */
<comment >"*"+[A*/\n] * /* eat up '*'s not followed by '/'s */
<coment >\ n ++l i ne_num
<conmment >"*"+"/" BEGQ N(I NI TI AL) ;

This scanner goes to a bit of trouble to match as much text as possible with each rule. In general, when
attempting to write a high-speed scanner try to match as much possible in each rule, as it's a big win.

Note that start-conditions names are really integer values and can be stored as such. Thus, the above
could be extended in the following fashion:

% conmment foo

9
int line_num= 1;
int cooment _caller;
n/*n {
coment _caller = I NI TIAL;
BEGQ N(conment) ;
}
<foo>"/*" {
coment _cal ler = foo;
BEGQ N(conment) ;
}
<conment >[A*\ n] * /* eat anything that's not a '*' */
<conment >"*"+[A*/\n] * /* eat up '*'s not followed by '/'s */
<conment >\ n ++l i ne_num
<comment >"*"+"/" BEGQ N(conment _cal | er);

Furthermore, you can access the current start condition using the integer-valued YY_START macro. For
example, the above assignments to conment _cal | er could instead be written

http://www.cs.princeton.edu/~appel/modern/c/software/flex/flex.html 07/03/2002

Flex - a scanner generator Péagina 16 de 39

coment _caller = YY_START
Flex provides YYSTATE as an alias for YY_START (since that is what's used by AT&T | ex).

Note that start conditions do not have their own name-space; %s's and %x's declare names in the same
fashion as #define's.

Finally, here's an example of how to match C-style quoted strings using exclusive start conditions,
including expanded escape sequences (but not including checking for a string that's too long):

M str
W
char string_buf[MAX_STR _CONST] ;
char *string_buf_ptr;
\ " string_buf _ptr = string buf; BEG N(str);
<str>\" { I'* saw closing quote - all done */
BEG N(I NI Tl AL) ;
*string buf_ptr = '\0";
/* return string constant token type and
* value to parser
*/
}
<str>\n

/* error - untermnated string constant */
/* generate error nessage */

}

<str>\\[0-7]{1, 3} {
/* octal escape sequence */
int result;

(void) sscanf(yytext + 1, "%", &result);

if (result > Oxff)
/* error, constant is out-of-bounds */

*string_ buf_ptr++ = result;

}

<str>\\[0-9]+ {
/* generate error - bad escape sequence; sonething
* like "\48" or '\0777777

*/
}
<str>\\n *string_buf_ptr++ = "\n';
<str>\\t *string_buf_ptr++ = "\t';
<str>\\r *string_buf_ptr++ = "\r";
<str>\\b *string_buf_ptr++ = "\Db';
<str>\\f *string_buf_ptr++ = "\f';

<str>\\(.|\n) *string_buf_ptr++ = yytext[1];

<str>[MAAN\ "]+ {
char *yptr = yytext;

while (*yptr)
*string_buf_ptr++ = *yptr++;
}

http://www.cs.princeton.edu/~appel/modern/c/software/flex/flex.html 07/03/2002

Flex - a scanner generator Péagina 17 de 39

Often, such as in some of the examples above, you wind up writing a whole bunch of rules all preceded
by the same start condition(s). Flex makes this a little easier and cleaner by introducing a notion of start
condition scope. A start condition scope is begun with:

<SCs>{

where SCs is a list of one or more start conditions. Inside the start condition scope, every rule
automatically has the prefix * <sCs>' applied to it, until a *}' which matches the initial * {* . So, for
example,

<ESCH{
"\\n" return '\n';
"\\r" return "\r';
"\ return "\ f';
"\\ 0" return '\0';
}
is equivalent to:
<ESC>"\\n" return '\n';
<ESC>"\\r" return '\r';
<ESC>"\\f" return "'\f';
<ESC>"\\0" return '\0';

Start condition scopes may be nested.
Three routines are available for manipulating stacks of start conditions:

“void yy push_state(int new state)’
pushes the current start condition onto the top of the start condition stack and switches to
new_state as though you had used * BEG N new st at e’ (recall that start condition names are also
integers).

“void yy pop_state()'
pops the top of the stack and switches to it via BEG N.

“int yy top_state()'
returns the top of the stack without altering the stack’s contents.

The start condition stack grows dynamically and so has no built-in size limitation. If memory is
exhausted, program execution aborts.

To use start condition stacks, your scanner must include a* %opt i on stack' directive (see Options
below).

Multiple input buffers

Some scanners (such as those which support "include” files) require reading from several input streams.
As f 1 ex scanners do a large amount of buffering, one cannot control where the next input will be read
from by simply writing a YY_I NPUT which is sensitive to the scanning context. Yy_I NPUT is only called
when the scanner reaches the end of its buffer, which may be a long time after scanning a statement such
as an "include™ which requires switching the input source.

To negotiate these sorts of problems, f I ex provides a mechanism for creating and switching between
multiple input buffers. An input buffer is created by using:

http://www.cs.princeton.edu/~appel/modern/c/software/flex/flex.html 07/03/2002

Flex - a scanner generator Pagina 18 de 39

YY_BUFFER_STATE yy create_buffer(FILE *file, int size)

which takes a FI LE pointer and a size and creates a buffer associated with the given file and large enough
to hold size characters (when in doubt, use YY_BUF_sSI zE for the size). It returns a YY_BUFFER_STATE
handle, which may then be passed to other routines (see below). The YY_BUFFER_STATE type is a pointer
to an opaque st ruct yy_buf f er _st at e structure, so you may safely initialize YY_BUFFER_STATE
variables to * ((YY_BUFFER _STATE) 0)' if you wish, and also refer to the opaque structure in order to
correctly declare input buffers in source files other than that of your scanner. Note that the FI LE pointer
in the call to yy_creat e_buf f er is only used as the value of yyi n seen by YY_I NPUT; if you redefine
YY_I NPUT so it no longer uses yyi n, then you can safely pass a nil FI LE pointer to yy_create_buffer.
You select a particular buffer to scan from using:

void yy switch_to_buffer(YY_BUFFER STATE new buffer)

switches the scanner's input buffer so subsequent tokens will come from new_buffer. Note that
‘yy_switch_to_buffer()' may be used by yyw ap()"' to set things up for continued scanning,
instead of opening a new file and pointing yyi n at it. Note also that switching input sources via either
“yy_switch_to_buffer()' or yyw ap()' does not change the start condition.

void yy delete_buffer(YY_BUFFER _STATE buffer)

is used to reclaim the storage associated with a buffer. You can also clear the current contents of a buffer
using:

void yy flush_buffer(YY_BUFFER STATE buffer)

This function discards the buffer's contents, so the next time the scanner attempts to match a token from
the buffer, it will first fill the buffer anew using YY_I NPUT.

“yy_new buffer ()" isan alias for " yy_create_buffer ()", provided for compatibility with the C++
use of newand del et e for creating and destroying dynamic objects.

Finally, the YY_CURRENT_BUFFER macro returns a YY_BUFFER_STATE handle to the current buffer.

Here is an example of using these features for writing a scanner which expands include files (the
* <<EOF>>' feature is discussed below):

/* the "incl" state is used for picking up the nane
* of an include file

*/

% i ncl

A

#defi ne MAX_| NCLUDE_DEPTH 10

YY_BUFFER_STATE i ncl ude_st ack[MAX_| NCLUDE_DEPTH] ;
int include_stack ptr = 0;

%

%%

i ncl ude BEQ N(i ncl);

[a-z] + ECHG,

[~*a-z\n] *\ n? ECHG,

<incl>[\t]* /* eat the whitespace */

<incl>" \t\n]+ { I'* got the include file nanme */
if (include_stack _ptr >= MAX | NCLUDE DEPTH)

http://www.cs.princeton.edu/~appel/modern/c/software/flex/flex.html 07/03/2002

Flex - a scanner generator Péagina 19 de 39

fprintf(stderr, "lIncludes nested too deeply");
exit(1);
}

i ncl ude_stack[include_stack ptr++] =
YY_CURRENT_BUFFER;
yyin = fopen(yytext, "r");

if (! yyin)
error(...);

yy_switch_to_buffer(
yy_create_buffer(yyin, YY_BUF_SIZE));

BEG N(I NI TI AL) ;

}
<<EOF>> {

if (--include_stack ptr < 0)
yyterm nate();

el se
{
yy_del ete_buffer(YY_CURRENT BUFFER);
yy_switch_to_buffer(

i ncl ude_stack[include_stack ptr]);

}

}

Three routines are available for setting up input buffers for scanning in-memory strings instead of files.
All of them create a new input buffer for scanning the string, and return a corresponding
YY_BUFFER_STATE handle (which you should delete with *yy_del et e_buffer ()’ when done with it).
They also switch to the new buffer using " yy_swi tch_t o_buffer ()", so the next call to “yyl ex()' will
start scanning the string.

“yy_scan_string(const char *str)
scans a NUL-terminated string.
‘yy_scan_bytes(const char *bytes, int |en)
scans | en bytes (including possibly NUL's) starting at location bytes.

Note that both of these functions create and scan a copy of the string or bytes. (This may be desirable,
since " yyl ex()' modifies the contents of the buffer it is scanning.) You can avoid the copy by using:

‘yy_scan_buffer(char *base, yy_size_t size)
which scans in place the buffer starting at base, consisting of size bytes, the last two bytes of which
must be YY_END OF BUFFER_CHAR (ASCII NUL). These last two bytes are not scanned; thus,
scanning consists of * base[0] ' through " base[si ze- 2] "', inclusive. If you fail to set up base in
this manner (i.e., forget the final two YY_END OF BUFFER_CHAR bytes), then " yy_scan_buffer ()"
returns a nil pointer instead of creating a new input buffer. The typeyy_si ze_t is an integral type
to which you can cast an integer expression reflecting the size of the buffer.

End-of-file rules

The special rule "<<EOF>>" indicates actions which are to be taken when an end-of-file is encountered
and yywrap() returns non-zero (i.e., indicates no further files to process). The action must finish by doing
one of four things:

http://www.cs.princeton.edu/~appel/modern/c/software/flex/flex.html 07/03/2002

Flex - a scanner generator Péagina 20 de 39

e assigning yyi n to a new input file (in previous versions of flex, after doing the assignment you had
to call the special action YY_NEW FI LE; this is no longer necessary);

e executing ar et ur n statement;

e executing the special " yyt ermi nate()"' action;

e or, switching to a new buffer using *yy_swi tch_to_buffer()' as shown in the example above.

<<EOF>> rules may not be used with other patterns; they may only be qualified with a list of start
conditions. If an unqualified <<EOF>> rule is given, it applies to all start conditions which do not
already have <<EOF>> actions. To specify an <<EOF>> rule for only the initial start condition, use

<| NI Tl AL><<ECOF>>

These rules are useful for catching things like unclosed comments. An example:

% quote
W

...other rules for dealing with quotes...

<quot e><<EOF>> {
error("unterm nated quote");
yyterm nate();

<<ECF>> {
if (*++filelist)
yyin = fopen(*filelist, "r");
el se
yyterm nate();

Miscellaneous macros

The macro YY_USER_ACTI ON can be defined to provide an action which is always executed prior to the
matched rule's action. For example, it could be #define'd to call a routine to convert yytext to lower-case.
When YY_USER _ACTI ONis invoked, the variable yy _act gives the number of the matched rule (rules are
numbered starting with 1). Suppose you want to profile how often each of your rules is matched. The
following would do the trick:

#defi ne YY_USER ACTI ON ++ctr[yy_act]

where ct r is an array to hold the counts for the different rules. Note that the macro YY_NuM RULES gives
the total number of rules (including the default rule, even if you use " - s', so a correct declaration for
ctr is:

int ctr[YY_NUM RULES] ;

The macro YY_USER | NI T may be defined to provide an action which is always executed before the first
scan (and before the scanner's internal initializations are done). For example, it could be used to call a
routine to read in a data table or open a logging file.

The macro “yy_set _interactive(is_interactive)' can be used to control whether the current
buffer is considered interactive. An interactive buffer is processed more slowly, but must be used when
the scanner's input source is indeed interactive to avoid problems due to waiting to fill buffers (see the
discussion of the -1 flag below). A non-zero value in the macro invocation marks the buffer as
interactive, a zero value as non-interactive. Note that use of this macro overrides " %opti on al ways-

http://www.cs.princeton.edu/~appel/modern/c/software/flex/flex.html 07/03/2002

Flex - a scanner generator Péagina 21 de 39

interactive' OF %ption never-interactive' (see Options below). yy set _interactive()'
must be invoked prior to beginning to scan the buffer that is (or is not) to be considered interactive.

The macro “yy_set _bol (at _bol)' can be used to control whether the current buffer's scanning context
for the next token match is done as though at the beginning of a line. A non-zero macro argument makes
rules anchored with

The macro *~ YY_AT_BOL()' returns true if the next token scanned from the current buffer will have "
rules active, false otherwise.

In the generated scanner, the actions are all gathered in one large switch statement and separated using
YY_BREAK, which may be redefined. By default, it is simply a "break™, to separate each rule's action from
the following rule's. Redefining YY_BREAK allows, for example, C++ users to #define YY_BREAK to do
nothing (while being very careful that every rule ends with a "break™ or a "return™!) to avoid suffering
from unreachable statement warnings where because a rule's action ends with "return”, the YY_BREAK is
inaccessible.

Values available to the user

This section summarizes the various values available to the user in the rule actions.

e “char *yytext' holds the text of the current token. It may be modified but not lengthened (you
cannot append characters to the end). If the special directive* %ar r ay' appears in the first section
of the scanner description, then yyt ext is instead declared " char yyt ext [YYLMAX] ', where
YYLMAX is a macro definition that you can redefine in the first section if you don't like the default
value (generally 8KB). Using " %ar r ay' results in somewhat slower scanners, but the value of
yyt ext becomes immune to calls to “i nput ()' and “unput ()", which potentially destroy its
value when yyt ext is a character pointer. The opposite of “ %array' IS %poi nter', which is the
default. You cannot use * %ar r ay' when generating C++ scanner classes (the " - +' flag).

e “int yyleng' holds the length of the current token.

e “FILE *yyin' isthe file which by default f | ex reads from. It may be redefined but doing so only
makes sense before scanning begins or after an EOF has been encountered. Changing it in the
midst of scanning will have unexpected results since f | ex buffers its input; use “yyrestart ()"
instead. Once scanning terminates because an end-of-file has been seen, you can assignyyi n at the
new input file and then call the scanner again to continue scanning.

e “void yyrestart(FILE *new file)' may be called to pointyyi n at the new input file. The
switch-over to the new file is immediate (any previously buffered-up input is lost). Note that
calling “yyrestart ()' with yyi n as an argument thus throws away the current input buffer and
continues scanning the same input file.

e “FILE *yyout"' isthe file to which * ECHO actions are done. It can be reassigned by the user.

e YY_CURRENT_BUFFER returns a YY_BUFFER_STATE handle to the current buffer.

e YY_START returns an integer value corresponding to the current start condition. You can
subsequently use this value with BEG Nto return to that start condition.

Interfacing with yacc

One of the main uses of f | ex is as a companion to the yacc parser-generator. yacc parsers expect to call
a routine named " yyl ex()"' to find the next input token. The routine is supposed to return the type of the
next token as well as putting any associated value in the global yyl val . To use f | ex with yacc, one
specifies the * - d' option to yacc to instruct it to generate the file “y. t ab. h* containing definitions of all
the * % okens' appearing in the yacc input. This file is then included in the f I ex scanner. For example,
if one of the tokens is "TOK_NUMBER", part of the scanner might look like:

http://www.cs.princeton.edu/~appel/modern/c/software/flex/flex.html 07/03/2002

Flex - a scanner generator Péagina 22 de 39

A

#i nclude "y.tab. h"

%
%

[0-9] + yylval = atoi(yytext); return TOK NUVBER,

Options

f 1 ex has the following options:

b

N
NENL

“on
-p‘

R
VL

Generate backing-up information to " I ex. backup' . This is a list of scanner states which require
backing up and the input characters on which they do so. By adding rules one can remove backing-
up states. If all backing-up states are eliminated and * - &' or * - CF' is used, the generated scanner
will run faster (see the " - p' flag). Only users who wish to squeeze every last cycle out of their
scanners need worry about this option. (See the section on Performance Considerations below.)

is a do-nothing, deprecated option included for POSIX compliance.

makes the generated scanner run in debug mode. Whenever a pattern is recognized and the global
yy_f | ex_debug is non-zero (which is the default), the scanner will write to st derr a line of the
form:

--accepting rule at Iine 53 ("the matched text")

The line number refers to the location of the rule in the file defining the scanner (i.e., the file that
was fed to flex). Messages are also generated when the scanner backs up, accepts the default rule,
reaches the end of its input buffer (or encounters a NUL; at this point, the two look the same as far
as the scanner's concerned), or reaches an end-of-file.

specifies fast scanner. No table compression is done and stdio is bypassed. The result is large but
fast. This option is equivalentto *- Cf r* (See below).

generates a "help" summary of f | ex' s options to st dout and then exits. *-?' and " - - hel p' are
synonyms for " - h' .

instructs f | ex to generate a case-insensitive scanner. The case of letters given in the f | ex input
patterns will be ignored, and tokens in the input will be matched regardless of case. The matched
text given in yyt ext will have the preserved case (i.e., it will not be folded).

turns on maximum compatibility with the original AT&T | ex implementation. Note that this does
not mean full compatibility. Use of this option costs a considerable amount of performance, and it
cannot be used with the * -+, -f, -F, -Cf',or -CF options. For details on the compatibilities
it provides, see the section "Incompatibilities With Lex And POSIX" below. This option also
results in the name YY_FLEX_LEX_COWPAT being #define'd in the generated scanner.

is another do-nothing, deprecated option included only for POSIX compliance.

generates a performance report to stderr. The report consists of comments regarding features of the
f I ex input file which will cause a serious loss of performance in the resulting scanner. If you give
the flag twice, you will also get comments regarding features that lead to minor performance
losses. Note that the use of REJECT, * %opti on yyl i neno' and variable trailing context (see the
Deficiencies / Bugs section below) entails a substantial performance penalty; use of " yynmore() ',
the * ~' operator, and the - 1' flag entail minor performance penalties.

causes the default rule (that unmatched scanner input is echoed to st dout) to be suppressed. If the
scanner encounters input that does not match any of its rules, it aborts with an error. This option is
useful for finding holes in a scanner's rule set.

instructs f | ex to write the scanner it generates to standard output instead of * I ex. yy. c' .

specifies that f I ex should write to st der r a summary of statistics regarding the scanner it
generates. Most of the statistics are meaningless to the casual f | ex user, but the first line identifies

http://www.cs.princeton.edu/~appel/modern/c/software/flex/flex.html 07/03/2002

Flex - a scanner generator Péagina 23 de 39

the version of f | ex (same as reported by " - v), and the next line the flags used when generating
the scanner, including those that are on by default.

T-w suppresses warning messages.

- B instructs f | ex to generate a batch scanner, the opposite of interactive scanners generated by " -

I'* (see below). In general, you use " - B when you are certain that your scanner will never be used
interactively, and you want to squeeze a little more performance out of it. If your goal is instead to
squeeze out a lot more performance, you should be using the* - cf* or ™ - CF* options (discussed
below), which turn on " - B' automatically anyway.

- F specifies that the fast scanner table representation should be used (and stdio bypassed). This
representation is about as fast as the full table representation* (-f) "', and for some sets of patterns
will be considerably smaller (and for others, larger). In general, if the pattern set contains both
"keywords" and a catch-all, "identifier" rule, such as in the set:

"case" return TOK CASE;
"switch" return TOK SW TCH;

" déf ault" return TOK DEFAULT,;
[a-z] + return TOK | D;

then you're better off using the full table representation. If only the "identifier" rule is present and
you then use a hash table or some such to detect the keywords, you're better off using™ - F . This
option is equivalent to * - cFr' (see below). It cannot be used with ™ - +' .

“- 1" instructs f | ex to generate an interactive scanner. An interactive scanner is one that only looks
ahead to decide what token has been matched if it absolutely must. It turns out that always looking
one extra character ahead, even if the scanner has already seen enough text to disambiguate the
current token, is a bit faster than only looking ahead when necessary. But scanners that always look
ahead give dreadful interactive performance; for example, when a user types a newline, it is not
recognized as a newline token until they enter another token, which often means typing in another
whole line. FI ex scanners default to interactive unless you use the * - cf' or ™ - CF' table-
compression options (see below). That's because if you're looking for high-performance you should
be using one of these options, so if you didn't, f | ex assumes you'd rather trade off a bit of run-time
performance for intuitive interactive behavior. Note also that you cannot use “ - I in conjunction
with *-Cf' or - CF' . Thus, this option is not really needed; it is on by default for all those cases in
which it is allowed. You can force a scanner to not be interactive by using " - B' (see above).

- L' instructs f 1 ex not to generate " #l i ne' directives. Without this option, f | ex peppers the generated
scanner with #line directives so error messages in the actions will be correctly located with respect
to either the original f | ex input file (if the errors are due to code in the input file), or
“lex.yy.c' (if the errors are f1 ex' s fault -- you should report these sorts of errors to the email
address given below).

*-T° makes flex runintrace mode. It will generate a lot of messages to st der r concerning the form
of the input and the resultant non-deterministic and deterministic finite automata. This option is
mostly for use in maintaining f | ex.

-V prints the version number to st dout and exits. " - - ver si on' is a synonym for™-Vv' .

- 7' instructs f | ex to generate a 7-bit scanner, i.e., one which can only recognized 7-bit characters in its
input. The advantage of using " - 7' is that the scanner's tables can be up to half the size of those
generated using the " - 8' option (see below). The disadvantage is that such scanners often hang or
crash if their input contains an 8-bit character. Note, however, that unless you generate your
scanner using the *- Cf' or " - CF table compression options, use of * - 7* will save only a small
amount of table space, and make your scanner considerably less portable. Fl ex' s default behavior
IS to generate an 8-bit scanner unless you use the - Cf* or * - CF', in which case f | ex defaults to
generating 7-bit scanners unless your site was always configured to generate 8-bit scanners (as will
often be the case with non-USA sites). You can tell whether flex generated a 7-bit or an 8-bit
scanner by inspecting the flag summary in the™ - v output as described above. Note that if you use
“-Cfe' or-Cre' (those table compression options, but also using equivalence classes as

http://www.cs.princeton.edu/~appel/modern/c/software/flex/flex.html 07/03/2002

Flex - a scanner generator Péagina 24 de 39

S

discussed see below), flex still defaults to generating an 8-bit scanner, since usually with these
compression options full 8-bit tables are not much more expensive than 7-bit tables.

instructs f | ex to generate an 8-bit scanner, i.e., one which can recognize 8-bit characters. This flag
is only needed for scanners generated using - Cf' or " - CF', as otherwise flex defaults to
generating an 8-bit scanner anyway. See the discussion of " - 7' above for flex's default behavior
and the tradeoffs between 7-bit and 8-bit scanners.

specifies that you want flex to generate a C++ scanner class. See the section on Generating C++
Scanners below for details.

- aefFnr]"

controls the degree of table compression and, more generally, trade-offs between small scanners
and fast scanners. " - ca' ("align™) instructs flex to trade off larger tables in the generated scanner
for faster performance because the elements of the tables are better aligned for memory access and
computation. On some RISC architectures, fetching and manipulating long-words is more efficient
than with smaller-sized units such as shortwords. This option can double the size of the tables used
by your scanner. " - Ce' directs f | ex to construct equivalence classes, i.e., sets of characters which
have identical lexical properties (for example, if the only appearance of digits in thef | ex input is
in the character class "[0-9]" then the digits '0", '1', ..., '9" will all be put in the same equivalence
class). Equivalence classes usually give dramatic reductions in the final table/object file sizes
(typically a factor of 2-5) and are pretty cheap performance-wise (one array look-up per character
scanned). * - cf ' specifies that the full scanner tables should be generated - f | ex should not
compress the tables by taking advantages of similar transition functions for different states. " - CF'
specifies that the alternate fast scanner representation (described above under the " - F flag) should
be used. This option cannot be used with * -+ .~ - Cmi directs f | ex to construct meta-equivalence
classes, which are sets of equivalence classes (or characters, if equivalence classes are not being
used) that are commonly used together. Meta-equivalence classes are often a big win when using
compressed tables, but they have a moderate performance impact (one or two "if" tests and one
array look-up per character scanned).” - Cr' causes the generated scanner to bypass use of the
standard 1/O library (stdio) for input. Instead of calling* fread()"' or getc()', the scanner will
use the “read()"' system call, resulting in a performance gain which varies from system to system,
but in general is probably negligible unless you are also using™-cf* or *-CF . Using " -Cr' can
cause strange behavior if, for example, you read fromyyi n using stdio prior to calling the scanner
(because the scanner will miss whatever text your previous reads left in the stdio input buffer). " -
Cr' has no effect if you define YY_I NPUT (see The Generated Scanner above). A lone ™ -C
specifies that the scanner tables should be compressed but neither equivalence classes nor meta-
equivalence classes should be used. The options *-cf' or*-CF' and " - cmi do not make sense
together - there is no opportunity for meta-equivalence classes if the table is not being compressed.
Otherwise the options may be freely mixed, and are cumulative. The default setting is™ - Cem ,
which specifies that f | ex should generate equivalence classes and meta-equivalence classes. This
setting provides the highest degree of table compression. You can trade off faster-executing
scanners at the cost of larger tables with the following generally being true:

sl owest & snal |l est

-Cem

-Cm

-Ce

-C
-Cf,F}le
-f, F}
-Cf,F}la

fastest & |argest

Note that scanners with the smallest tables are usually generated and compiled the quickest, so
during development you will usually want to use the default, maximal compression.™ - Cfe' is
often a good compromise between speed and size for production scanners.

- oout put’

http://www.cs.princeton.edu/~appel/modern/c/software/flex/flex.html 07/03/2002

Flex - a scanner generator Pagina 25 de 39

directs flex to write the scanner to the file “ out -' put instead of "I ex. yy. c¢' . If you combine " -
o' with the *-t' option, then the scanner is written to st dout but its * #l i ne' directives (see the
*-L' option above) refer to the file out put .

T -Pprefix'
changes the default * yy' prefix used by f | ex for all globally-visible variable and function names
to instead be prefix. For example, " - Pf oo’ changes the name of yyt ext to " f oot ext' . It also
changes the name of the default output file from I ex. yy. c' to "I ex. f oo. c' . Here are all of the
names affected:

yy_create_buffer
yy_del ete_buffer
yy_fl ex_debug
yy_init_buffer
yy_flush_buffer
yy_load_buffer_state
yy_switch_to_buffer

yyin
yyl eng

yyl ex
yyl i neno

yyout
yyrestart

yyt ext
yywrap

(If you are using a C++ scanner, then onlyyyw ap and yyFl exLexer are affected.) Within your
scanner itself, you can still refer to the global variables and functions using either version of their
name; but externally, they have the modified name. This option lets you easily link together
multiple f I ex programs into the same executable. Note, though, that using this option also
renames " yywr ap() ', SO you now must either provide your own (appropriately-named) version of
the routine for your scanner, or use * %opt i on noyyw ap' , as linking with *-1f1"' no longer
provides one for you by default.

"-Sskeleton file'
overrides the default skeleton file from which f I ex constructs its scanners. You'll never need this
option unless you are doing f | ex maintenance or development.

f 1 ex also provides a mechanism for controlling options within the scanner specification itself, rather
than from the flex command-line. This is done by including * %ept i on' directives in the first section of
the scanner specification. You can specify multiple options with a single * %ept i on' directive, and
multiple directives in the first section of your flex input file. Most options are given simply as names,
optionally preceded by the word "no™ (with no intervening whitespace) to negate their meaning. A
number are equivalent to flex flags or their negation:

7bi t -7 option
8bi t -8 option
align -Ca option
backup -b option
bat ch -B option
c++ -+ option

caseful or
case-sensitive opposite of -i (default)

case-i nsensitive or

casel ess -i option
debug -d option
def aul t opposite of -s option
ecs -Ce option
f ast -F option
full -f option

http://www.cs.princeton.edu/~appel/modern/c/software/flex/flex.html 07/03/2002

Flex - a scanner generator Péagina 26 de 39

i nteractive -1 option
| ex- conpat -1 option
net a- ecs -Cm option
perf-report -p option
read -Cr option
st dout -t option
ver bose -v option
war n opposite of -w option
(use "% option nowarn" for -w)
array equi val ent to "%array"
poi nt er equi val ent to "%ointer" (default)

Some " %opt i on' s' provide features otherwise not available:

“al ways-interactive'
instructs flex to generate a scanner which always considers its input "interactive™. Normally, on
each new input file the scanner calls “i satty()' inan attempt to determine whether the scanner's
input source is interactive and thus should be read a character at a time. When this option is used,
however, then no such call is made.

“mai n'
directs flex to provide a default * mai n()* program for the scanner, which simply calls * yyl ex() " .
This option implies noyywr ap (see below).

‘never-interactive'
instructs flex to generate a scanner which never considers its input "interactive” (again, no call
made to “isatty())"'. Thisis the opposite of * al ways-' interactive.

“stack'
enables the use of start condition stacks (see Start Conditions above).

“stdinit'
if unset (i.e., " %opti on nostdinit") initializes yyi n and yyout to nil FI LE pointers, instead of
st di n and st dout .

“yylineno'
directs f | ex to generate a scanner that maintains the number of the current line read from its input
in the global variable yyl i neno. This option is implied by " %opti on | ex- conpat ' .

Tyywr ap'
if unset (i.e., > %opti on noyyw ap'), makes the scanner not call * yywr ap()' upon an end-of-file,
but simply assume that there are no more files to scan (until the user pointsyyi n at a new file and
calls “yyl ex()' again).

f 1 ex scans your rule actions to determine whether you use the REJECT or “ yynore()"' features. The

rej ect and yynor e options are available to override its decision as to whether you use the options, either
by setting them (e.g.,” %epti on reject') to indicate the feature is indeed used, or unsetting them to
indicate it actually is not used (e.g., ~ %opti on noyynore').

Three options take string-delimited values, offset with '="

Y%option outfil e="ABC"

is equivalent to " - oABC , and
Yoption prefix="XYzZ"

is equivalent to * - PXYZ' .

Finally,

http://www.cs.princeton.edu/~appel/modern/c/software/flex/flex.html 07/03/2002

Flex - a scanner generator Péagina 27 de 39

%option yycl ass="foo"

only applies when generating a C++ scanner (-+ option). It informs f | ex that you have derived " f oo’
as a subclass of yyFl exLexer so f1 ex will place your actions in the member function " f oo: : yyl ex()"
instead of " yyFl exLexer: :yyl ex()"' . It also generates a" yyFl exLexer: :yyl ex()' member function
that emits a run-time error (by invoking * yyFl exLexer: : Lexer Error ()") if called. See Generating C++
Scanners, below, for additional information.

A number of options are available for lint purists who want to suppress the appearance of unneeded
routines in the generated scanner. Each of the following, if unset, results in the corresponding routine not
appearing in the generated scanner:

i nput, unput
yy_push_state, yy pop_state, yy top_state
yy_scan_buffer, yy scan_bytes, yy scan_string

(though *yy_push_state()' and friends won't appear anyway unless you use" %opti on stack').

Performance considerations

The main design goal of f | ex is that it generate high-performance scanners. It has been optimized for
dealing well with large sets of rules. Aside from the effects on scanner speed of the table compression " -
C options outlined above, there are a number of options/actions which degrade performance. These are,
from most expensive to least:

REJECT
Y%option yylineno
arbitrary trailing context

pattern sets that require backing up
Yarray

Y%option interactive

Y%option al ways-interactive

' A" begi nni ng-of -1i ne operator
yynor e()

with the first three all being quite expensive and the last two being quite cheap. Note also that * unput
()' isimplemented as a routine call that potentially does quite a bit of work, while*yyl ess()"' isa
quite-cheap macro; so if just putting back some excess text you scanned, use " yyl ess()" .

REJECT should be avoided at all costs when performance is important. It is a particularly expensive
option.

Getting rid of backing up is messy and often may be an enormous amount of work for a complicated
scanner. In principal, one begins by using the " - b’ flag to generate a " | ex. backup' file. For example,
on the input

9%
foo return TOK_KEYWORD;
f oobar return TOK_KEYWORD,

the file looks like:

State #6 is non-accepting -
associ ated rule |ine nunbers:

http://www.cs.princeton.edu/~appel/modern/c/software/flex/flex.html 07/03/2002

Flex - a scanner generator Péagina 28 de 39

2 3
out-transitions: [o]
jamtransitions: EOF [\001-n p-\177]

State #8 is non-accepting -
associ ated rule |ine nunbers:
3
out-transitions: [a]
jamtransitions: EO-F [\001-° b-\177]

State #9 is non-accepting -
associ ated rule |ine nunbers:
3
out-transitions: [r]
jamtransitions: EO-F [\001-q s-\177]

Conpressed tabl es al ways back up

The first few lines tell us that there's a scanner state in which it can make a transition on an ‘o’ but not on
any other character, and that in that state the currently scanned text does not match any rule. The state
occurs when trying to match the rules found at lines 2 and 3 in the input file. If the scanner is in that state
and then reads something other than an 'o’, it will have to back up to find a rule which is matched. With a
bit of head-scratching one can see that this must be the state it's in when it has seen "fo". When this has
happened, if anything other than another ‘o’ is seen, the scanner will have to back up to simply match the
' (by the default rule).

The comment regarding State #8 indicates there's a problem when "foob" has been scanned. Indeed, on
any character other than an 'a’, the scanner will have to back up to accept "foo". Similarly, the comment
for State #9 concerns when "fooba" has been scanned and an 'r' does not follow.

The final comment reminds us that there's no point going to all the trouble of removing backing up from
the rules unless we're using * - Cf* or * - CF', since there's no performance gain doing so with compressed
scanners.

The way to remove the backing up is to add "error" rules:

%W

foo return TOK_KEYWORD
f oobar return TOK _KEYWORD;
f ooba |

f oob |

fo {

/* false alarm not really a keyword */
return TOK | b

}

Eliminating backing up among a list of keywords can also be done using a "catch-all" rule:

%W

foo return TOK_KEYWORD
f oobar return TOK_KEYWORD;
[a-2z] + return TOK | D;

This is usually the best solution when appropriate.
Backing up messages tend to cascade. With a complicated set of rules it's not uncommon to get hundreds

of messages. If one can decipher them, though, it often only takes a dozen or so rules to eliminate the
backing up (though it's easy to make a mistake and have an error rule accidentally match a valid token. A

http://www.cs.princeton.edu/~appel/modern/c/software/flex/flex.html 07/03/2002

Flex - a scanner generator Pagina 29 de 39

possible future f 1 ex feature will be to automatically add rules to eliminate backing up).

It's important to keep in mind that you gain the benefits of eliminating backing up only if you eliminate
every instance of backing up. Leaving just one means you gain nothing.

Variable trailing context (where both the leading and trailing parts do not have a fixed length) entails
almost the same performance loss as REJECT (i.e., substantial). So when possible a rule like:

9
nmouse| rat/ (cat| dog) run();

is better written:

L)

nmouse/ cat | dog run();
rat/cat| dog run();
or as

9

nouse| rat/ cat run();
nmouse| rat/ dog run();

Note that here the special '|' action does not provide any savings, and can even make things worse (see
Deficiencies / Bugs below).

Another area where the user can increase a scanner's performance (and one that's easier to implement)
arises from the fact that the longer the tokens matched, the faster the scanner will run. This is because
with long tokens the processing of most input characters takes place in the (short) inner scanning loop,
and does not often have to go through the additional work of setting up the scanning environment (e.g.,
yyt ext) for the action. Recall the scanner for C comments:

% commrent
%%
int line_num= 1;

np e BEG N(conment) ;

<coment >[A*\ n] *

<comment >"*"+[A*/\n] *

<coment >\ n ++l i ne_num
<conmment >"*"+"/" BEGQ N(I NI TI AL) ;

This could be sped up by writing it as:

% commrent
%%
int line_num= 1;

np e BEG N(conmment) ;

<coment >[A*\ n] *

<coment >[**\ n] *\n ++l i ne_num
<comment >"*"+[A*/\n]*

<coment >"*"+[A*/\n]*\'n ++line_num
<conmment >"*"+"/" BEGQ N(I NI TI AL) ;

Now instead of each newline requiring the processing of another action, recognizing the newlines is
"distributed” over the other rules to keep the matched text as long as possible. Note that adding rules

http://www.cs.princeton.edu/~appel/modern/c/software/flex/flex.html 07/03/2002

Flex - a scanner generator Péagina 30 de 39

does not slow down the scanner! The speed of the scanner is independent of the number of rules or
(modulo the considerations given at the beginning of this section) how complicated the rules are with
regard to operators such as *"and '|'.

A final example in speeding up a scanner: suppose you want to scan through a file containing identifiers
and keywords, one per line and with no other extraneous characters, and recognize all the keywords. A
natural first approach is:

9%

asm |

aut o |

br eak |

... etc ...

volatile |

whil e /* it's a keyword */

.]\n /* it's not a keyword */
To eliminate the back-tracking, introduce a catch-all rule:

%%

asm |

aut o |

br eak |

... etc ...

volatile |

whil e /* it's a keyword */
[a-z]+ |

.]\n /* it's not a keyword */

Now, if it's guaranteed that there's exactly one word per line, then we can reduce the total number of
matches by a half by merging in the recognition of newlines with that of the other tokens:

9%

asmn |

auto\n |

break\n |

... etc ...

volatile\n |

while\n /* it's a keyword */
[a-z] +\n |

.]\n /* it's not a keyword */

One has to be careful here, as we have now reintroduced backing up into the scanner. In particular, while
we know that there will never be any characters in the input stream other than letters or newlines, f I ex
can't figure this out, and it will plan for possibly needing to back up when it has scanned a token like
"auto” and then the next character is something other than a newline or a letter. Previously it would then
just match the "auto” rule and be done, but now it has no "auto" rule, only a "auto\n" rule. To eliminate
the possibility of backing up, we could either duplicate all rules but without final newlines, or, since we
never expect to encounter such an input and therefore don't how it's classified, we can introduce one
more catch-all rule, this one which doesn't include a newline:

9%

asmn |

auto\n |

break\n |

... etc ...

volatile\n |

while\n /* it's a keyword */

http://www.cs.princeton.edu/~appel/modern/c/software/flex/flex.html 07/03/2002

Flex - a scanner generator Pagina 31 de 39

[a-z] +\n |
[a-z]+ |
.]\n /* it's not a keyword */

Compiled with * - cf ', this is about as fast as one can get af 1 ex scanner to go for this particular
problem.

A final note: f | ex is slow when matching NUL's, particularly when a token contains multiple NUL's. It's
best to write rules which match short amounts of text if it's anticipated that the text will often include
NUL's.

Another final note regarding performance: as mentioned above in the section How the Input is Matched,
dynamically resizingyyt ext to accommodate huge tokens is a slow process because it presently requires
that the (huge) token be rescanned from the beginning. Thus if performance is vital, you should attempt
to match "large™ quantities of text but not "huge™ quantities, where the cutoff between the two is at about
8K characters/token.

Generating C++ scanners

f 1 ex provides two different ways to generate scanners for use with C++. The first way is to simply
compile a scanner generated by f | ex using a C++ compiler instead of a C compiler. You should not
encounter any compilations errors (please report any you find to the email address given in the Author
section below). You can then use C++ code in your rule actions instead of C code. Note that the default
input source for your scanner remains yyi n, and default echoing is still done to yyout . Both of these
remain " FI LE *' variables and not C++ st r eams.

You can also use f | ex to generate a C++ scanner class, using the ™ - +' option, (or, equivalently, * %
option c++'), which is automatically specified if the name of the flex executable ends ina" +', such as
f 1 ex++. When using this option, flex defaults to generating the scanner to the file * I ex. yy. cc' instead
of 1 ex. yy. c¢' . The generated scanner includes the header file * Fl exLexer. h' , which defines the
interface to two C++ classes.

The first class, FI exLexer, provides an abstract base class defining the general scanner class interface. It
provides the following member functions:

‘const char* YYText()'
returns the text of the most recently matched token, the equivalent of yyt ext .

“int YYLeng()'
returns the length of the most recently matched token, the equivalent of yyl eng.

“int lineno() const'
returns the current input line number (see * %opti on yylineno'), or 1if * %option yylineno'
was not used.

“void set_debug(int flag)’
sets the debugging flag for the scanner, equivalent to assigning toyy_f 1 ex_debug (see the Options
section above). Note that you must build the scanner using * %ept i on debug' to include
debugging information in it.

“int debug() const'
returns the current setting of the debugging flag.

Also provided are member functions equivalentto “yy_switch_to_buffer(), yy_create_buffer

()" (though the first argument isan i st reant' object pointer and nota FI LE*', yy_flush_buffer
()', yy_delete_buffer()',and yyrestart()' (again, the firstargumentisa i streant' object

http://www.cs.princeton.edu/~appel/modern/c/software/flex/flex.html 07/03/2002

Flex - a scanner generator Péagina 32 de 39

pointer).

The second class defined in ~ Fl exLexer . h' is yyFl exLexer, which is derived from Fl exLexer . It
defines the following additional member functions:

"yyFl exLexer(istreant arg_yyin = 0, ostreanft arg yyout = 0)'
constructs a yyFl exLexer object using the given streams for input and output. If not specified, the
streams default to ci n and cout , respectively.

“virtual int yylex()'
performs the same role is “yyl ex()' does for ordinary flex scanners: it scans the input stream,

consuming tokens, until a rule's action returns a value. If you derive a subclass S from
yyFl exLexer and want to access the member functions and variables of S inside " yyl ex() "', then
you need to use * %opt i on yycl ass="S"' to inform f I ex that you will be using that subclass
instead of yyFl exLexer . In this case, rather than generating " yyFl exLexer: :yyl ex()"', fl ex
generates " S: : yyl ex()' (and also generates a dummy " yyFl exLexer: : yyl ex()"' that calls
“yyFl exLexer: : LexerError ()" if called).

“virtual void switch_streanms(istreant new.in = 0, ostreant new out = 0)
reassigns yyi n to new_i n (if non-nil) and yyout to new_out (ditto), deleting the previous input
buffer if yyi n is reassigned.

“int yylex(istreanf new.in = 0, ostreanf new out = 0)’
first switches the input streams via “ swi t ch_streanms(new_in, new out)' and then returns
the value of " yyl ex()'.

In addition, yyFl exLexer defines the following protected virtual functions which you can redefine in
derived classes to tailor the scanner:

“virtual int Lexerlnput(char* buf, int nmax_size)’
reads up to " max_si ze' characters into buf and returns the number of characters read. To indicate
end-of-input, return 0 characters. Note that "interactive"” scanners (see the™-B' and “-1"' flags)
define the macro YY_I NTERACTI VE. If you redefine Lexer | nput () and need to take different
actions depending on whether or not the scanner might be scanning an interactive input source, you
can test for the presence of this name via " #i f def ' .

“virtual void LexerQutput(const char* buf, int size)’
writes out size characters from the buffer buf, which, while NUL-terminated, may also contain
"internal™ NUL's if the scanner's rules can match text with NUL's in them.

“virtual void LexerError(const char* msg)’
reports a fatal error message. The default version of this function writes the message to the stream

cerr and exits.

Note that a yyFl exLexer object contains its entire scanning state. Thus you can use such objects to
create reentrant scanners. You can instantiate multiple instances of the same yyFl exLexer class, and you
can also combine multiple C++ scanner classes together in the same program using the * - P option
discussed above. Finally, note that the * %ar r ay' feature is not available to C++ scanner classes; you

must use " %poi nter' (the default).

Here is an example of a simple C++ scanner:

/1 An exanple of using the flex C++ scanner cl ass.
A
int nmylineno = O;
%
string \"[Mn"]+"

http://www.cs.princeton.edu/~appel/modern/c/software/flex/flex.html 07/03/2002

Flex - a scanner generator

WS [\t]+

al pha [A Za- z]

dig [0-9]

name ({al pha}|{dig}[\$) ({al pha}|{dig}|[_.\-/$])*
nunil [-+] ?{dig}+\.?2([eE][-+] ?{dig}+)?

nung [-4] ?{dig}*\.{dig}+([eE][-+] ?{dig}+)?
nunber {numl}| { nunt}

W

{ws} /* skip blanks and tabs */

n/*n {
int c;
while((c = yyinput()) !'= 0)
{
if(c =="'\n")
++nyl i neno;
else if(c =="*")
{ _
if((c = yyinput()) =="/")
br eak;
el se
unput (c);
}
}
{nunber} cout << "number " << YYText() << '\n';
\n nyl i neno++;
{ nane} cout << "npame " << YYText() << '\n';

{string} cout << "string " << YYText() << '\n';
90

Version 2.5 Decenber 1994

int min(int /* argc */, char** [* argv */)

Fl exLexer* | exer = new yyFl exLexer
whi | e(l exer->yylex() !'= 0)

return O;

}

Pagina 33 de 39

44

If you want to create multiple (different) lexer classes, you use the" - P flag (or the ~ prefi x=" option)
to rename each yyFl exLexer to some other xxFl exLexer . You then can include * <Fl exLexer . h>' in
your other sources once per lexer class, first renamingyyFl exLexer as follows:

#undef yyFl exLexer
#defi ne yyFl exLexer xxFl exLexer
#i ncl ude <Fl exLexer. h>

#undef yyFl exLexer
#defi ne yyFl exLexer zzFl exLexer
#i ncl ude <Fl exLexer. h>

if, for example, you used * %opti on prefix="xx"" for one of your scanners and " %opt i on

prefix="zz"" for the other.

http://www.cs.princeton.edu/~appel/modern/c/software/flex/flex.html

07/03/2002

Flex - a scanner generator Péagina 34 de 39

IMPORTANT: the present form of the scanning class is experimental and may change considerably
between major releases.

Incompatibilities with 1 ex and POSIX

f1 ex is a rewrite of the AT&T Unix | ex tool (the two implementations do not share any code, though),
with some extensions and incompatibilities, both of which are of concern to those who wish to write
scanners acceptable to either implementation. Flex is fully compliant with the POSIX | ex specification,
except that when using * %poi nt er' (the default), a call to * unput ()' destroys the contents of yyt ext,
which is counter to the POSIX specification.

In this section we discuss all of the known areas of incompatibility between flex, AT&T lex, and the
POSIX specification.

flex's -1' option turns on maximum compatibility with the original AT&T I ex implementation, at
the cost of a major loss in the generated scanner's performance. We note below which incompatibilities
can be overcome using the *-1' option.

f 1 ex is fully compatible with | ex with the following exceptions:

e The undocumented | ex scanner internal variable yyl i neno is not supported unless “-1" or " %
option yylineno' isused.yylineno should be maintained on a per-buffer basis, rather than a
per-scanner (single global variable) basis. yyl i neno is not part of the POSIX specification.

e The “input ()" routine is not redefinable, though it may be called to read characters following
whatever has been matched by a rule. If “i nput ()' encounters an end-of-file the normal * yyw ap
()" processing is done. A "real" end-of-file is returned by " i nput ()' as ECF. Input is instead
controlled by defining the YY_I NPUT macro. The f | ex restriction that * i nput ()' cannot be
redefined is in accordance with the POSIX specification, which simply does not specify any way of
controlling the scanner's input other than by making an initial assignment toyyi n.

e The “unput ()" routine is not redefinable. This restriction is in accordance with POSIX.

e f1 ex scanners are not as reentrant as | ex scanners. In particular, if you have an interactive scanner
and an interrupt handler which long-jumps out of the scanner, and the scanner is subsequently
called again, you may get the following message:

fatal flex scanner internal error--end of buffer m ssed
To reenter the scanner, first use
yyrestart(yyin);

Note that this call will throw away any buffered input; usually this isn't a problem with an
interactive scanner. Also note that flex C++ scanner classes are reentrant, so if using C++ is an
option for you, you should use them instead. See "Generating C++ Scanners" above for details.

e “output ()" isnotsupported. Output from the * ECHO macro is done to the file-pointer yyout
(default st dout). ~out put () is not part of the POSIX specification.

o | ex does not support exclusive start conditions (%x), though they are in the POSIX specification.

o When definitions are expanded, f I ex encloses them in parentheses. With lex, the following:

NAME [A-Z][A-Z0-9] *

L)

f 0o{ NANVE} ? printf("Found it\n");
9

http://www.cs.princeton.edu/~appel/modern/c/software/flex/flex.html 07/03/2002

Flex - a scanner generator Péagina 35 de 39

will not match the string "foo" because when the macro is expanded the rule is equivalent to "foo
[A-Z][A-Z0-9]*?" and the precedence is such that the '?" is associated with "[A-Z0-9]*". With
f 1 ex, the rule will be expanded to "foo([A-Z][A-Z0-9]*)?" and so the string "foo™ will match.
Note that if the definition begins with > ~' or ends with * $' then it is not expanded with
parentheses, to allow these operators to appear in definitions without losing their special meanings.
But the *<s>, /', and <<EOF>>' operators cannot be used in af | ex definition. Using " - 1"
results in the | ex behavior of no parentheses around the definition. The POSIX specification is that
the definition be enclosed in parentheses.

e Some implementations of | ex allow a rule's action to begin on a separate line, if the rule's pattern
has trailing whitespace:

%%
f oo| bar <space here>
{ foobar_action(); }

f 1 ex does not support this feature.

e Thelex %' (generate a Ratfor scanner) option is not supported. It is not part of the POSIX
specification.

e Afteracall to unput ()", yytext isundefined until the next token is matched, unless the scanner
was built using * %ar r ay' . This is not the case with | ex or the POSIX specification. The ™ -1
option does away with this incompatibility.

e The precedence of the * {}' (numeric range) operator is different. | ex interprets "abc{1,3}" as
"match one, two, or three occurrences of ‘abc™, whereasf | ex interprets it as "match ‘ab' followed
by one, two, or three occurrences of 'c™. The latter is in agreement with the POSIX specification.

e The precedence of the *~' operator is different. | ex interprets "~foo|bar" as "match either 'foo’ at
the beginning of a line, or 'bar' anywhere", whereasf | ex interprets it as "match either 'foo’ or 'bar’
if they come at the beginning of a line". The latter is in agreement with the POSIX specification.

o The special table-size declarations such as " %a' supported by | ex are not required by f I ex
scanners; f | ex ignores them.

e The name FLEX_SCANNER is #define'd so scanners may be written for use with eitherf 1 ex or
| ex. Scanners also include YY_FLEX_MAJOR_VERSI ONand YY_FLEX_M NOR_VERSI ON indicating
which version of f | ex generated the scanner (for example, for the 2.5 release, these defines would
be 2 and 5 respectively).

The following f | ex features are not included in | ex or the POSIX specification:

C++ scanners

Y%option

start condition scopes

start condition stacks

i nteractive/ non-interactive scanners
yy_scan_string() and friends
yyterm nat e()

yy_set _interactive()

yy_set _bol ()

YY_AT_BOL()

<<EOF>>

<* >

YY_DECL

YY_START

YY_USER_ACTI ON

YY_USER INIT

#line directives

%{}'s around actions
multiple actions on a line

plus almost all of the flex flags. The last feature in the list refers to the fact that with f | ex you can put

http://www.cs.princeton.edu/~appel/modern/c/software/flex/flex.html 07/03/2002

Flex - a scanner generator Péagina 36 de 39

multiple actions on the same line, separated with semicolons, while with | ex, the following

foo handl e_foo(); ++num foos_seen

is (rather surprisingly) truncated to

foo handl e_f oo();

f | ex does not truncate the action. Actions that are not enclosed in braces are simply terminated at the
end of the line.

Diagnostics

“warni ng, rule cannot be matched
indicates that the given rule cannot be matched because it follows other rules that will always
match the same text as it. For example, in the following "foo™ cannot be matched because it comes
after an identifier "catch-all" rule:

[a-z] + got _identifier();
f oo got _foo();

Using REJECT in a scanner suppresses this warning.

warning, -s option given but default rule can be matched'
means that it is possible (perhaps only in a particular start condition) that the default rule (match
any single character) is the only one that will match a particular input. Since" -s' was given,
presumably this is not intended.

“reject_used_but_not_detected undefined

“yynore_used_but _not _detected undefi ned
These errors can occur at compile time. They indicate that the scanner uses REJECT or " yynore()'
but that f | ex failed to notice the fact, meaning that f | ex scanned the first two sections looking for
occurrences of these actions and failed to find any, but somehow you snuck some in (via a
#include file, for example). Use * %opti on reject' or %option yynore' to indicate to flex that
you really do use these features.

“flex scanner janmed'
a scanner compiled with - s has encountered an input string which wasn't matched by any of its
rules. This error can also occur due to internal problems.

“token too | arge, exceeds YYLMAX
your scanner uses " %ar r ay' and one of its rules matched a string longer than the * YYL-' MAX
constant (8K bytes by default). You can increase the value by #define'ing YYLMAX in the definitions
section of your f | ex input.

“scanner requires -8 flag to use the character 'x'
Your scanner specification includes recognizing the 8-bit character x and you did not specify the -8
flag, and your scanner defaulted to 7-bit because you used the* - cf' or * - CF' table compression
options. See the discussion of the * - 7' flag for details.

“flex scanner push-back overfl ow
you used " unput ()" to push back so much text that the scanner's buffer could not hold both the
pushed-back text and the current token in yyt ext . Ideally the scanner should dynamically resize
the buffer in this case, but at present it does not.

“input buffer overflow, can't enlarge buffer because scanner uses REJECT'
the scanner was working on matching an extremely large token and needed to expand the input
buffer. This doesn't work with scanners that use REJECT.

“fatal flex scanner internal error--end of buffer m ssed
This can occur in an scanner which is reentered after a long-jump has jumped out (or over) the

http://www.cs.princeton.edu/~appel/modern/c/software/flex/flex.html 07/03/2002

Flex - a scanner generator Péagina 37 de 39

scanner's activation frame. Before reentering the scanner, use:
yyrestart(yyin);

or, as noted above, switch to using the C++ scanner class.

"too many start conditions in <> construct!"’
you listed more start conditions in a <> construct than exist (so you must have listed at least one of
them twice).

Files
C-lfl
library with which scanners must be linked.
“lex.yy.c'
generated scanner (called " I exyy. ¢c' on some systems).
"l ex.yy.cc'
generated C++ scanner class, when using ™ - +' .
" <Fl exLexer . h>'
header file defining the C++ scanner base class, FI exLexer, and its derived class, yyFl exLexer .
“flex.skl'
skeleton scanner. This file is only used when building flex, not when flex executes.
| ex. backup'
backing-up information for * - b' flag (called " I ex. bck' on some systems).

Deficiencies / Bugs

Some trailing context patterns cannot be properly matched and generate warning messages (“‘dangerous
trailing context"). These are patterns where the ending of the first part of the rule matches the beginning
of the second part, such as "zx*/xy*", where the 'x*' matches the X' at the beginning of the trailing
context. (Note that the POSIX draft states that the text matched by such patterns is undefined.)

For some trailing context rules, parts which are actually fixed-length are not recognized as such, leading
to the abovementioned performance loss. In particular, parts using '|' or {n} (such as "foo{3}") are always
considered variable-length.

Combining trailing context with the special '|' action can result in fixed trailing context being turned into
the more expensive variable trailing context. For example, in the following:

9
abc |
xyz/ def

Use of “unput () ' invalidates yytext and yyleng, unless the" %array' directive or the *-1' option has
been used.

Pattern-matching of NUL's is substantially slower than matching other characters.

Dynamic resizing of the input buffer is slow, as it entails rescanning all the text matched so far by the
current (generally huge) token.

Due to both buffering of input and read-ahead, you cannot intermix calls to <stdio.h> routines, such as,
for example, “ get char () ', with f I ex rules and expect it to work. Call *i nput ()" instead.

http://www.cs.princeton.edu/~appel/modern/c/software/flex/flex.html 07/03/2002

Flex - a scanner generator Péagina 38 de 39

The total table entries listed by the * - v' flag excludes the number of table entries needed to determine
what rule has been matched. The number of entries is equal to the number of DFA states if the scanner
does not use REJECT, and somewhat greater than the number of states if it does.

REJECT cannot be used with the *-f* or - F options.

The f 1 ex internal algorithms need documentation.

See also
I ex(1), yacc(l), sed(1), ank ().

John Levine, Tony Mason, and Doug Brown: Lex & Yacc; O'Reilly and Associates. Be sure to get the
2nd edition.

M. E. Lesk and E. Schmidt, LEX - Lexical Analyzer Generator.

Alfred Aho, Ravi Sethi and Jeffrey Ullman: Compilers: Principles, Techniques and Tools; Addison-
Wesley (1986). Describes the pattern-matching techniques used by f | ex (deterministic finite automata).

Author

Vern Paxson, with the help of many ideas and much inspiration from Van Jacobson. Original version by
Jef Poskanzer. The fast table representation is a partial implementation of a design done by Van
Jacobson. The implementation was done by Kevin Gong and Vern Paxson.

Thanks to the many f | ex beta-testers, feedbackers, and contributors, especially Francois Pinard, Casey
Leedom, Stan Adermann, Terry Allen, David Barker-Plummer, John Basrai, Nelson H.F. Beebe,
“benson@di . coni , Karl Berry, Peter A. Bigot, Simon Blanchard, Keith Bostic, Frederic Brehm, lan
Brockbank, Kin Cho, Nick Christopher, Brian Clapper, J.T. Conklin, Jason Coughlin, Bill Cox, Nick
Cropper, Dave Curtis, Scott David Daniels, Chris G. Demetriou, Theo Deraadt, Mike Donahue, Chuck
Doucette, Tom Epperly, Leo Eskin, Chris Faylor, Chris Flatters, Jon Forrest, Joe Gayda, Kaveh R. Ghazi,
Eric Goldman, Christopher M. Gould, Ulrich Grepel, Peer Griebel, Jan Hajic, Charles Hemphill, NORO
Hideo, Jarkko Hietaniemi, Scott Hofmann, Jeff Honig, Dana Hudes, Eric Hughes, John Interrante, Ceriel
Jacobs, Michal Jaegermann, Sakari Jalovaara, Jeffrey R. Jones, Henry Juengst, Klaus Kaempf, Jonathan
I. Kamens, Terrence O Kane, Amir Katz, * ken@en. hi | co. com , Kevin B. Kenny, Steve Kirsch,
Winfried Koenig, Marqg Kole, Ronald Lamprecht, Greg Lee, Rohan Lenard, Craig Leres, John Levine,
Steve Liddle, Mike Long, Mohamed el Lozy, Brian Madsen, Malte, Joe Marshall, Bengt Martensson,
Chris Metcalf, Luke Mewburn, Jim Meyering, R. Alexander Milowski, Erik Naggum, G.T. Nicol,
Landon Noll, James Nordby, Marc Nozell, Richard Ohnemus, Karsten Pahnke, Sven Panne, Roland
Pesch, Walter Pelissero, Gaumond Pierre, Esmond Pitt, Jef Poskanzer, Joe Rahmeh, Jarmo Raiha,
Frederic Raimbault, Pat Rankin, Rick Richardson, Kevin Rodgers, Kai Uwe Rommel, Jim Roskind,
Alberto Santini, Andreas Scherer, Darrell Schiebel, Raf Schietekat, Doug Schmidt, Philippe
Schnoebelen, Andreas Schwab, Alex Siegel, Eckehard Stolz, Jan-Erik Strvmquist, Mike Stump, Paul
Stuart, Dave Tallman, lan Lance Taylor, Chris Thewalt, Richard M. Timoney, Jodi Tsai, Paul Tuinenga,
Gary Weik, Frank Whaley, Gerhard Wilhelms, Kent Williams, Ken Yap, Ron Zellar, Nathan Zelle,
David Zuhn, and those whose names have slipped my marginal mail-archiving skills but whose
contributions are appreciated all the same.

Thanks to Keith Bostic, Jon Forrest, Noah Friedman, John Gilmore, Craig Leres, John Levine, Bob
Mulcahy, G.T. Nicol, Francois Pinard, Rich Salz, and Richard Stallman for help with various distribution

http://www.cs.princeton.edu/~appel/modern/c/software/flex/flex.html 07/03/2002

Flex - a scanner generator Péagina 39 de 39

headaches.

Thanks to Esmond Pitt and Earle Horton for 8-bit character support; to Benson Margulies and Fred
Burke for C++ support; to Kent Williams and Tom Epperly for C++ class support; to Ove Ewerlid for
support of NUL's; and to Eric Hughes for support of multiple buffers.

This work was primarily done when | was with the Real Time Systems Group at the Lawrence Berkeley
Laboratory in Berkeley, CA. Many thanks to all there for the support I received.

Send comments to * ver n@e. | bl . gov' .

This document was generated on 21 November 1996 using the texi2html translator version 1.51.

http://www.cs.princeton.edu/~appel/modern/c/software/flex/flex.html 07/03/2002

